Multiple variable matching

Results for NTCIR10-FS-9

Query

Original Query

NTCIR10-FS-9 Formula Search Query Multiple variable matching \frac{e^{{\qvar{x}}}+\qvar{y}}{\qvar{z}} e + superscript e The subtlety is that x x x , y y y , z z z can be alpha-renamed or fully substituted, while e e e is a constant.

Compiled by FSE

Token-Filter

  • TeXFilter:[e, +, \, ^, frac]
  • Presentation-MathML:[e, +]

MathML-Filter

mfrac[mrow[msup[mi[e];(.*)];mo[+];(.*)];(.*)] apply[divide;apply[plus;apply[csymbol[superscript];ci[e];(.*)];(.*)];(.*)]

Word filter

No words found specifified. Rendered Presentation-MathML: e +

Results

Summary

Reviewer score 2

  • Items reviewd: 1
  • Accumulated score: 50
  • Formulasearchengine found: 1

Reviewer score 1

  • Items reviewd: 47
  • Accumulated score: 225500
  • Formulasearchengine found: 46

Reviewer score 0

  • Items reviewd: 91
  • Accumulated score: 105750
  • Formulasearchengine found: 56

Short result list

Detailed results for reviewer score 4

Detailed results for reviewer score 3

Detailed results for reviewer score 2

Hit id58068

  • Reviwer: cdemirkiran
  • Reviwer score: 2
  • Formulasearchengine score: 50
  • Reference to collection: _PREFIX_/103/f041063.xhtml#id58068
found all required tokens ([2 x 2, d x 2, e x 2, b x 2, c x 2, ⁢ x 5, a x 2, σ x 2, + x 3, , x 2, = x 2, τ x 2, x x 10]) in PMML at pos:68952(24%) Scoringfunction: ' + PMML_HIT_SCORE + NO_TEXT_SCORE + 1.75 * TOKEN_SCORE[e] + 1.875 * TOKEN_SCORE[+] =+50.0+0.0+1.75*0.307267883373706+1.875*0.0160883895861106 = 50.567884526377945' final score ~ 50 reviewer: cdemirkiran gave 2
Rendered MathML:
σx=ax2+bx+c,τx=xd+e,σxasuperscriptx2bxcτxxde
End of MathML
.

Detailed results for reviewer score 1

Hit id56111

  • Reviwer: smiao
  • Reviwer score: 1
  • Formulasearchengine score: 14100
  • Reference to collection: _PREFIX_/208/f083074.xhtml#id56111
found all required tokens in TeX $\frac{e^{{i\omega t}}+e^{{-i\omega t}}}{2}$ at pos:39707(18%) CMML match: 0=apply[divide;apply[plus;apply[ csymbol[superscript];ci[e];apply[times;ci[i];ci[ω];ci[t]]];apply[ csymbol[superscript];ci[e];apply[minus;apply[times;ci[i];ci[ω];ci[t]]]]];cn[2]] 1=apply[times;ci[i];ci[ω];ci[t]]];apply[ csymbol[superscript];ci[e];apply[minus;apply[times;ci[i];ci[ω 2=ci[t]]]] 3=cn[2] CMML exact match bonus. PMML match: 0=mfrac[mrow[msup[mi[e];mrow[mi[i];mi[ω];mi[t]]];mo[+];msup[mi[e];mrow[mo[-];mrow[mi[i];mi[ω];mi[t]]]]];mn[2]] 1=mrow[mi[i];mi[ω];mi[t]] 2=msup[mi[e];mrow[mo[-];mrow[mi[i];mi[ω];mi[t]]]] 3=mn[2] PMML exact match bonus. Scoringfunction: ' + TeX_HIT_SCORE + CMML_SCORE * 1.0 + CMML_SCORE + PMML_SCORE * 1.0 + PMML_SCORE + NO_TEXT_SCORE + 1.75 * TOKEN_SCORE[e] + 1.5 * TOKEN_SCORE[+] + 1.875 * TOKEN_SCORE[\] + 1.75 * TOKEN_SCORE[^] + 1.5 * TOKEN_SCORE[frac] =+100.0+5000.0*1.0+5000.0+2000.0*1.0+2000.0+0.0+1.75*0.307267883373706+1.5*0.0160883895861106+1.875*5.92879328325965E-4+1.75*0.00338742677192689+1.5*0.0366287198730455 = 14100.623834105683' final score ~ 14100 reviewer: smiao gave 1
Rendered MathML:
eiωt+e-iωt2superscripteiωtsuperscripteiωt2\frac{e^{{i\omega t}}+e^{{-i\omega t}}}{2}
End of MathML
.

Hit id86776

  • Reviwer: smiao
  • Reviwer score: 1
  • Formulasearchengine score: 14100
  • Reference to collection: _PREFIX_/39/f015263.xhtml#id86776
found all required tokens in TeX $\frac{e^{{\lambda\omega}}+e^{{-\lambda\omega}}}{\lambda^{{2}}}$ at pos:531467(94%) CMML match: 0=apply[divide;apply[plus;apply[ csymbol[superscript];ci[e];apply[times;ci[λ];ci[ω]]];apply[ csymbol[superscript];ci[e];apply[minus;apply[times;ci[λ];ci[ω]]]]];apply[ csymbol[superscript];ci[λ];cn[2]]] 1=apply[times;ci[λ];ci[ω]]];apply[ csymbol[superscript];ci[e];apply[minus;apply[times;ci[λ];ci[ω]]]]];apply[ csymbol[superscript 2=ci[λ 3=cn[2]] CMML exact match bonus. PMML match: 0=mfrac[mrow[msup[mi[e];mrow[mi[λ];mi[ω]]];mo[+];msup[mi[e];mrow[mo[-];mrow[mi[λ];mi[ω]]]]];msup[mi[λ];mn[2]]] 1=mrow[mi[λ];mi[ω]] 2=msup[mi[e];mrow[mo[-];mrow[mi[λ];mi[ω]]]]];msup[mi[λ 3=mn[2]] PMML exact match bonus. Scoringfunction: ' + TeX_HIT_SCORE + CMML_SCORE * 1.0 + CMML_SCORE + PMML_SCORE * 1.0 + PMML_SCORE + NO_TEXT_SCORE + 1.75 * TOKEN_SCORE[e] + 1.5 * TOKEN_SCORE[+] + 1.984375 * TOKEN_SCORE[\] + 1.875 * TOKEN_SCORE[^] + 1.5 * TOKEN_SCORE[frac] =+100.0+5000.0*1.0+5000.0+2000.0*1.0+2000.0+0.0+1.75*0.307267883373706+1.5*0.0160883895861106+1.984375*5.92879328325965E-4+1.875*0.00338742677192689+1.5*0.0366287198730455 = 14100.624322380208' final score ~ 14100 reviewer: smiao gave 1
Rendered MathML:
eλω+e-λωλ2superscripteλωsuperscripteλωsuperscriptλ2\frac{e^{{\lambda\omega}}+e^{{-\lambda\omega}}}{\lambda^{{2}}}
End of MathML
.

Hit id62149

  • Reviwer: smiao
  • Reviwer score: 1
  • Formulasearchengine score: 12050
  • Reference to collection: _PREFIX_/214/f085526.xhtml#id62149
found all required tokens ([2 x 2, E x 4, 0 x 2, e x 4, ¯ x 2, ⁢ x 2, σ, +, ,, β x 4, Z x 2, - x 2]) in PMML at pos:133389(27%) CMML match: 0=apply[divide;apply[plus;apply[ csymbol[superscript];ci[e];apply[minus;apply[times;ci[β];apply[ csymbol[subscript];ci[E];apply[ ci[¯];ci[σ]]]]]];apply[ csymbol[superscript];ci[e];apply[minus;apply[times;ci[β];apply[ csymbol[subscript];ci[E];cn[2]]]]]];apply[ csymbol[subscript];ci[Z];cn[0]]] 1=apply[minus;apply[times;ci[β];apply[ csymbol[subscript];ci[E];apply[ ci[¯];ci[σ]]]]]];apply[ csymbol[superscript];ci[e];apply[minus;apply[times;ci[β];apply[ csymbol[subscript];ci[E];cn[2]]]]]];apply[ csymbol[subscript 2=ci[Z 3=cn[0]] CMML exact match bonus. PMML match: 0=mfrac[mrow[msup[mi[e];mrow[mo[-];mrow[mi[β];msub[mi[E];mover[mi[σ];mo[¯]]]]]];mo[+];msup[mi[e];mrow[mo[-];mrow[mi[β];msub[mi[E];mn[2]]]]]];msub[mi[Z];mn[0]]]];mo[,]] 1=mrow[mo[-];mrow[mi[β];msub[mi[E];mover[mi[σ];mo[¯]]]]] 2=msup[mi[e];mrow[mo[-];mrow[mi[β];msub[mi[E];mn[2]]]]]];msub[mi[Z];mn[0]]] 3=mo[,] Scoringfunction: ' + PMML_HIT_SCORE + CMML_SCORE * 1.0 + CMML_SCORE + PMML_SCORE * 1.0 + NO_TEXT_SCORE + 1.9375 * TOKEN_SCORE[e] + 1.5 * TOKEN_SCORE[+] =+50.0+5000.0*1.0+5000.0+2000.0*1.0+0.0+1.9375*0.307267883373706+1.5*0.0160883895861106 = 12050.619464108417' final score ~ 12050 reviewer: smiao gave 1
Rendered MathML:
e-βEσ¯+e-βE2Z0,superscripteβsubscriptE¯σsuperscripteβsubscriptE2subscriptZ0
End of MathML
.

Hit id62368

  • Reviwer: smiao
  • Reviwer score: 1
  • Formulasearchengine score: 12050
  • Reference to collection: _PREFIX_/214/f085526.xhtml#id62368
found all required tokens ([E x 4, 0 x 4, e x 4, ⁢ x 2, σ x 2, +, ., β x 4, Z x 2, - x 2]) in PMML at pos:136779(28%) CMML match: 0=apply[divide;apply[plus;apply[ csymbol[superscript];ci[e];apply[minus;apply[times;ci[β];apply[ csymbol[subscript];ci[E];cn[0]]]]];apply[ csymbol[superscript];ci[e];apply[minus;apply[times;ci[β];apply[ csymbol[subscript];ci[E];ci[σ]]]]]];apply[ csymbol[subscript];ci[Z];cn[0]]] 1=apply[minus;apply[times;ci[β];apply[ csymbol[subscript];ci[E];cn[0]]]]];apply[ csymbol[superscript];ci[e];apply[minus;apply[times;ci[β];apply[ csymbol[subscript];ci[E];ci[σ]]]]]];apply[ csymbol[subscript 2=ci[Z 3=cn[0]] CMML exact match bonus. PMML match: 0=mfrac[mrow[msup[mi[e];mrow[mo[-];mrow[mi[β];msub[mi[E];mn[0]]]]];mo[+];msup[mi[e];mrow[mo[-];mrow[mi[β];msub[mi[E];mi[σ]]]]]];msub[mi[Z];mn[0]]]];mo[.]] 1=mrow[mo[-];mrow[mi[β];msub[mi[E];mn[0]]]] 2=msup[mi[e];mrow[mo[-];mrow[mi[β];msub[mi[E];mi[σ]]]]]];msub[mi[Z];mn[0]]] 3=mo[.] Scoringfunction: ' + PMML_HIT_SCORE + CMML_SCORE * 1.0 + CMML_SCORE + PMML_SCORE * 1.0 + NO_TEXT_SCORE + 1.9375 * TOKEN_SCORE[e] + 1.5 * TOKEN_SCORE[+] =+50.0+5000.0*1.0+5000.0+2000.0*1.0+0.0+1.9375*0.307267883373706+1.5*0.0160883895861106 = 12050.619464108417' final score ~ 12050 reviewer: smiao gave 1
Rendered MathML:
e-βE0+e-βEσZ0.superscripteβsubscriptE0superscripteβsubscriptEσsubscriptZ0
End of MathML
.

Hit id105588

  • Reviwer: smiao
  • Reviwer score: 1
  • Formulasearchengine score: 7100
  • Reference to collection: _PREFIX_/51/f020031.xhtml#id105588
found all required tokens in TeX $\zeta(m)=1+(4\frac{\kappa}{\beta}\sigma _{{xx}})\frac{e^{{i\beta a_{0}^{l}}}+e^{{-i\beta a_{0}^{r}}}}{\frac{\theta(\nu)}{\pi}+2m-1}-(4\frac{\kappa}{\beta}\sigma _{{xx}})\frac{e^{{-i\beta a_{0}^{l}}}+e^{{i\beta a_{0}^{r}}}}{\frac{\theta(\nu)}{\pi}+2m+1}.$ at pos:794349(83%) CMML match: 0=apply[divide;apply[plus;apply[ csymbol[superscript];ci[e];apply[times;ci[i];ci[β];apply[ csymbol[superscript];apply[ csymbol[subscript];ci[a];cn[0]];ci[l]]]];apply[ csymbol[superscript];ci[e];apply[minus;apply[times;ci[i];ci[β];apply[ csymbol[superscript];apply[ csymbol[subscript];ci[a];cn[0]];ci[r]]]]]];apply[minus;apply[plus;apply[divide;apply[times;ci[θ];ci[ν]];ci[π]];apply[times;cn[2];ci[m]]];cn[1]]]]];apply[times;cn[4];apply[divide;ci[κ];ci[β]];apply[ csymbol[subscript];ci[σ];apply[times;ci[x];ci[x]]];apply[divide;apply[plus;apply[ csymbol[superscript];ci[e];apply[minus;apply[times;ci[i];ci[β];apply[ csymbol[superscript];apply[ csymbol[subscript];ci[a];cn[0]];ci[l]]]]];apply[ csymbol[superscript];ci[e];apply[times;ci[i];ci[β];apply[ csymbol[superscript];apply[ csymbol[subscript];ci[a];cn[0]];ci[r]]]]];apply[plus;apply[divide;apply[times;ci[θ];ci[ν]];ci[π]];apply[times;cn[2];ci[m]];cn[1]]]]]] 1=apply[times;ci[i];ci[β];apply[ csymbol[superscript];apply[ csymbol[subscript];ci[a];cn[0]];ci[l]]]];apply[ csymbol[superscript];ci[e];apply[minus;apply[times;ci[i];ci[β];apply[ csymbol[superscript];apply[ csymbol[subscript];ci[a];cn[0]];ci[r]]]]]];apply[minus;apply[plus;apply[divide;apply[times;ci[θ];ci[ν]];ci[π]];apply[times;cn[2];ci[m]]];cn[1]]]]];apply[times;cn[4];apply[divide;ci[κ];ci[β]];apply[ csymbol[subscript];ci[σ];apply[times;ci[x];ci[x]]];apply[divide;apply[plus;apply[ csymbol[superscript];ci[e];apply[minus;apply[times;ci[i];ci[β];apply[ csymbol[superscript];apply[ csymbol[subscript];ci[a];cn[0]];ci[l]]]]];apply[ csymbol[superscript];ci[e];apply[times;ci[i];ci[β];apply[ csymbol[superscript];apply[ csymbol[subscript];ci[a];cn[0]];ci[r]]]]];apply[plus;apply[divide;apply[times;ci[θ];ci[ν]];ci[π]];apply[times;cn[2 2=ci[m] 3=cn[1]]]]] PMML match: 0=mfrac[mrow[msup[mi[e];mrow[mi[i];mi[β];msubsup[mi[a];mn[0];mi[l]]]];mo[+];msup[mi[e];mrow[mo[-];mrow[mi[i];mi[β];msubsup[mi[a];mn[0];mi[r]]]]]];mrow[mfrac[mrow[mi[θ];mfenced[mi[ν]]];mi[π]];mo[+];mrow[mn[2];mi[m]];mo[-];mn[1]]]];mo[-];mrow[mn[4];mfrac[mi[κ];mi[β]];msub[mi[σ];mrow[mi[x];mi[x]]];mfrac[mrow[msup[mi[e];mrow[mo[-];mrow[mi[i];mi[β];msubsup[mi[a];mn[0];mi[l]]]]];mo[+];msup[mi[e];mrow[mi[i];mi[β];msubsup[mi[a];mn[0];mi[r]]]]];mrow[mfrac[mrow[mi[θ];mfenced[mi[ν]]];mi[π]];mo[+];mrow[mn[2];mi[m]];mo[+];mn[1]]]]]];mo[.]] 1=mrow[mi[i];mi[β];msubsup[mi[a];mn[0];mi[l]]]];mo[+];msup[mi[e];mrow[mo[-];mrow[mi[i];mi[β];msubsup[mi[a];mn[0];mi[r]]]]]];mrow[mfrac[mrow[mi[θ];mfenced[mi[ν]]];mi[π]];mo[+];mrow[mn[2];mi[m]];mo[-];mn[1]]]];mo[-];mrow[mn[4];mfrac[mi[κ];mi[β]];msub[mi[σ];mrow[mi[x];mi[x]]];mfrac[mrow[msup[mi[e];mrow[mo[-];mrow[mi[i];mi[β];msubsup[mi[a];mn[0];mi[l]]]]];mo[+];msup[mi[e];mrow[mi[i];mi[β];msubsup[mi[a];mn[0];mi[r]]]]];mrow[mfrac[mrow[mi[θ];mfenced[mi[ν]]];mi[π]];mo[+];mrow[mn[2];mi[m] 2=mn[1]]]]] 3=mo[.] Scoringfunction: ' + TeX_HIT_SCORE + CMML_SCORE * 1.0 + PMML_SCORE * 1.0 + NO_TEXT_SCORE + 1.9375 * TOKEN_SCORE[e] + 1.984375 * TOKEN_SCORE[+] + 1.9999998807907104 * TOKEN_SCORE[\] + 1.99609375 * TOKEN_SCORE[^] + 1.984375 * TOKEN_SCORE[frac] =+100.0+5000.0*1.0+2000.0*1.0+0.0+1.9375*0.307267883373706+1.984375*0.0160883895861106+1.9999998807907104*5.92879328325965E-4+1.99609375*0.00338742677192689+1.984375*0.0366287198730455 = 7100.707889418114' final score ~ 7100 reviewer: smiao gave 1
Rendered MathML:
ζm=1+4κβσxxeiβa0l+e-iβa0rθνπ+2m-1-4κβσxxe-iβa0l+eiβa0rθνπ+2m+1.ζm14κβsubscriptσxxsuperscripteiβsuperscriptsubscripta0lsuperscripteiβsuperscriptsubscripta0rθνπ2m14κβsubscriptσxxsuperscripteiβsuperscriptsubscripta0lsuperscripteiβsuperscriptsubscripta0rθνπ2m1\zeta(m)=1+(4\frac{\kappa}{\beta}\sigma _{{xx}})\frac{e^{{i\beta a_{0}^{l}}}+e^{{-i\beta a_{0}^{r}}}}{\frac{\theta(\nu)}{\pi}+2m-1}-(4\frac{\kappa}{\beta}\sigma _{{xx}})\frac{e^{{-i\beta a_{0}^{l}}}+e^{{i\beta a_{0}^{r}}}}{\frac{\theta(\nu)}{\pi}+2m+1}.
End of MathML
.

Hit id121964

  • Reviwer: smiao
  • Reviwer score: 1
  • Formulasearchengine score: 7100
  • Reference to collection: _PREFIX_/138/f054955.xhtml#id121964
found all required tokens in TeX $\frac{n_{{4}}(M)}{n_{{4}}(0)}=\frac{S}{S_{{0}}}\frac{e^{{\beta}}+1+e^{{-\beta}}}{3e^{{\beta m_{{S}}}}}.$ at pos:1115839(66%) CMML match: 0=apply[divide;apply[plus;apply[ csymbol[superscript];ci[e];ci[β]];cn[1];apply[ csymbol[superscript];ci[e];apply[minus;ci[β]]]];apply[times;cn[3];apply[ csymbol[superscript];ci[e];apply[times;ci[β];apply[ csymbol[subscript];ci[m];ci[S]]]]]]]] 1=ci[β]];cn[1];apply[ csymbol[superscript];ci[e];apply[minus;ci[β]]]];apply[times;cn[3];apply[ csymbol[superscript];ci[e];apply[times;ci[β];apply[ csymbol[subscript 2=ci[m 3=ci[S]]]]]]] PMML match: 0=mfrac[mrow[msup[mi[e];mi[β]];mo[+];mn[1];mo[+];msup[mi[e];mrow[mo[-];mi[β]]]];mrow[mn[3];msup[mi[e];mrow[mi[β];msub[mi[m];mi[S]]]]]]]];mo[.]] 1=mi[β]];mo[+];mn[1 2=msup[mi[e];mrow[mo[-];mi[β]]]];mrow[mn[3];msup[mi[e];mrow[mi[β];msub[mi[m];mi[S]]]]]]] 3=mo[.] Scoringfunction: ' + TeX_HIT_SCORE + CMML_SCORE * 1.0 + PMML_SCORE * 1.0 + NO_TEXT_SCORE + 1.875 * TOKEN_SCORE[e] + 1.75 * TOKEN_SCORE[+] + 1.984375 * TOKEN_SCORE[\] + 1.875 * TOKEN_SCORE[^] + 1.875 * TOKEN_SCORE[frac] =+100.0+5000.0*1.0+2000.0*1.0+0.0+1.875*0.307267883373706+1.75*0.0160883895861106+1.984375*5.92879328325965E-4+1.875*0.00338742677192689+1.875*0.0366287198730455 = 7100.680488732978' final score ~ 7100 reviewer: smiao gave 1
Rendered MathML:
n4Mn40=SS0eβ+1+e-β3eβmS.subscriptn4Msubscriptn40SsubscriptS0superscripteβ1superscripteβ3superscripteβsubscriptmS\frac{n_{{4}}(M)}{n_{{4}}(0)}=\frac{S}{S_{{0}}}\frac{e^{{\beta}}+1+e^{{-\beta}}}{3e^{{\beta m_{{S}}}}}.
End of MathML
.

Hit id125443

  • Reviwer: smiao
  • Reviwer score: 1
  • Formulasearchengine score: 7100
  • Reference to collection: _PREFIX_/35/f013719.xhtml#id125443
found all required tokens in TeX $u=\ln\left|c_{1}+c_{0}(e^{{-x}}+\gamma)\right|,\quad u=\ln\left(-\frac{1}{2t(e^{{-x}}+\gamma)}-\frac{c_{1}}{t}+c_{0}\frac{e^{{-x}}+\gamma}{t}\right).$ at pos:1091652(81%) CMML match: 0=apply[divide;apply[plus;apply[ csymbol[superscript];ci[e];apply[minus;ci[x]]];ci[γ]];ci[t]]]]]]] 1=apply[minus;ci[x]] 2=ci[γ] 3=ci[t]]]]]] PMML match: 0=mfrac[mrow[msup[mi[e];mrow[mo[-];mi[x]]];mo[+];mi[γ]];mi[t]]]]]]]];mo[.]] 1=mrow[mo[-];mi[x]] 2=mi[γ]];mi[t]]]]]]] 3=mo[.] Scoringfunction: ' + TeX_HIT_SCORE + CMML_SCORE * 1.0 + PMML_SCORE * 1.0 + NO_TEXT_SCORE + 1.875 * TOKEN_SCORE[e] + 1.96875 * TOKEN_SCORE[+] + 1.9998779296875 * TOKEN_SCORE[\] + 1.875 * TOKEN_SCORE[^] + 1.875 * TOKEN_SCORE[frac] =+100.0+5000.0*1.0+2000.0*1.0+0.0+1.875*0.307267883373706+1.96875*0.0160883895861106+1.9998779296875*5.92879328325965E-4+1.875*0.00338742677192689+1.875*0.0366287198730455 = 7100.684017259567' final score ~ 7100 reviewer: smiao gave 1
Rendered MathML:
u=lnc1+c0e-x+γ,u=ln-12te-x+γ-c1t+c0e-x+γt.usubscriptc1subscriptc0superscriptexγu12tsuperscriptexγsubscriptc1tsubscriptc0superscriptexγtu=\ln\left|c_{1}+c_{0}(e^{{-x}}+\gamma)\right|,\quad u=\ln\left(-\frac{1}{2t(e^{{-x}}+\gamma)}-\frac{c_{1}}{t}+c_{0}\frac{e^{{-x}}+\gamma}{t}\right).
End of MathML
.

Hit id131449

  • Reviwer: smiao
  • Reviwer score: 1
  • Formulasearchengine score: 7100
  • Reference to collection: _PREFIX_/138/f054849.xhtml#id131449
found all required tokens in TeX $\displaystyle\Lambda\left(\log\left(\frac{e^{{t/2}}+1}{e^{{t/2}}-1}\right)+2\arctan(e^{{t/2}})-C\right)e^{{-t/2}}(e^{{2t}}-1)$ at pos:1198542(92%) CMML match: 0=apply[divide;apply[plus;apply[ csymbol[superscript];ci[e];apply[divide;ci[t];cn[2]]];cn[1]];apply[minus;apply[ csymbol[superscript];ci[e];apply[divide;ci[t];cn[2]]];cn[1]]]];apply[times;cn[2];apply[arctan;apply[ csymbol[superscript];ci[e];apply[divide;ci[t];cn[2]]]]]];ci[C]];apply[ csymbol[superscript];ci[e];apply[minus;apply[divide;ci[t];cn[2]]]];apply[minus;apply[ csymbol[superscript];ci[e];apply[times;cn[2];ci[t]]];cn[1]]] 1=apply[divide;ci[t];cn[2]]];cn[1]];apply[minus;apply[ csymbol[superscript];ci[e];apply[divide;ci[t];cn[2]]];cn[1]]]];apply[times;cn[2];apply[arctan;apply[ csymbol[superscript];ci[e];apply[divide;ci[t];cn[2]]]]]];ci[C]];apply[ csymbol[superscript];ci[e];apply[minus;apply[divide;ci[t];cn[2]]]];apply[minus;apply[ csymbol[superscript];ci[e];apply[times;cn[2 2=ci[t]] 3=cn[1]] PMML match: 0=mfrac[mrow[msup[mi[e];mrow[mi[t];mo[/];mn[2]]];mo[+];mn[1]];mrow[msup[mi[e];mrow[mi[t];mo[/];mn[2]]];mo[-];mn[1]]]]]];mo[+];mrow[mn[2];mrow[mi[arctan];mfenced[msup[mi[e];mrow[mi[t];mo[/];mn[2]]]]]];mo[-];mi[C]]];msup[mi[e];mrow[mo[-];mrow[mi[t];mo[/];mn[2]]]];mfenced[mrow[msup[mi[e];mrow[mn[2];mi[t]]];mo[-];mn[1]]]] 1=mrow[mi[t];mo[/];mn[2]]];mo[+];mn[1]];mrow[msup[mi[e];mrow[mi[t];mo[/];mn[2]]];mo[-];mn[1]]]]] 2=mrow[mn[2];mrow[mi[arctan];mfenced[msup[mi[e];mrow[mi[t];mo[/];mn[2]]]]]];mo[-];mi[C]]];msup[mi[e];mrow[mo[-];mrow[mi[t];mo[/];mn[2]]]];mfenced[mrow[msup[mi[e];mrow[mn[2];mi[t]]];mo[- 3=mn[1]]] Scoringfunction: ' + TeX_HIT_SCORE + CMML_SCORE * 1.0 + PMML_SCORE * 1.0 + NO_TEXT_SCORE + 1.96875 * TOKEN_SCORE[e] + 1.75 * TOKEN_SCORE[+] + 1.998046875 * TOKEN_SCORE[\] + 1.96875 * TOKEN_SCORE[^] + 1.5 * TOKEN_SCORE[frac] =+100.0+5000.0*1.0+2000.0*1.0+0.0+1.96875*0.307267883373706+1.75*0.0160883895861106+1.998046875*5.92879328325965E-4+1.96875*0.00338742677192689+1.5*0.0366287198730455 = 7100.695885004123' final score ~ 7100 reviewer: smiao gave 1
Rendered MathML:
Λloget/2+1et/2-1+2arctanet/2-Ce-t/2e2t-1Λsuperscriptet21superscriptet212superscriptet2Csuperscriptet2superscripte2t1\displaystyle\Lambda\left(\log\left(\frac{e^{{t/2}}+1}{e^{{t/2}}-1}\right)+2\arctan(e^{{t/2}})-C\right)e^{{-t/2}}(e^{{2t}}-1)
End of MathML
.

Hit id131980

  • Reviwer: smiao
  • Reviwer score: 1
  • Formulasearchengine score: 7100
  • Reference to collection: _PREFIX_/138/f054849.xhtml#id131980
found all required tokens in TeX $\displaystyle-\frac{t}{24}+\frac{1}{12}\log\left(e^{{2t}}-1\right)-\frac{1}{4}\log\left(\log\left(\frac{e^{{t/2}}+1}{e^{{t/2}}-1}\right)+2\arctan(e^{{t/2}})-C\right)$ at pos:1206881(93%) CMML match: 0=apply[divide;apply[plus;apply[ csymbol[superscript];ci[e];apply[divide;ci[t];cn[2]]];cn[1]];apply[minus;apply[ csymbol[superscript];ci[e];apply[divide;ci[t];cn[2]]];cn[1]]]];apply[times;cn[2];apply[arctan;apply[ csymbol[superscript];ci[e];apply[divide;ci[t];cn[2]]]]]];ci[C]]]]] 1=apply[divide;ci[t];cn[2]]];cn[1]];apply[minus;apply[ csymbol[superscript];ci[e];apply[divide;ci[t];cn[2]]];cn[1]]]];apply[times;cn[2];apply[arctan;apply[ csymbol[superscript];ci[e];apply[divide;ci[t 2=cn[2]]]]] 3=ci[C]]]] PMML match: 0=mfrac[mrow[msup[mi[e];mrow[mi[t];mo[/];mn[2]]];mo[+];mn[1]];mrow[msup[mi[e];mrow[mi[t];mo[/];mn[2]]];mo[-];mn[1]]]]]];mo[+];mrow[mn[2];mrow[mi[arctan];mfenced[msup[mi[e];mrow[mi[t];mo[/];mn[2]]]]]];mo[-];mi[C]]]]]] 1=mrow[mi[t];mo[/];mn[2]]];mo[+];mn[1]];mrow[msup[mi[e];mrow[mi[t];mo[/];mn[2]]];mo[-];mn[1]]]]] 2=mrow[mn[2];mrow[mi[arctan];mfenced[msup[mi[e];mrow[mi[t];mo[/];mn[2]]]]]];mo[- 3=mi[C]]]]] Scoringfunction: ' + TeX_HIT_SCORE + CMML_SCORE * 1.0 + PMML_SCORE * 1.0 + NO_TEXT_SCORE + 1.9375 * TOKEN_SCORE[e] + 1.875 * TOKEN_SCORE[+] + 1.999969482421875 * TOKEN_SCORE[\] + 1.9375 * TOKEN_SCORE[^] + 1.9375 * TOKEN_SCORE[frac] =+100.0+5000.0*1.0+2000.0*1.0+0.0+1.9375*0.307267883373706+1.875*0.0160883895861106+1.999969482421875*5.92879328325965E-4+1.9375*0.00338742677192689+1.9375*0.0366287198730455 = 7100.704214279199' final score ~ 7100 reviewer: smiao gave 1
Rendered MathML:
-t24+112loge2t-1-14logloget/2+1et/2-1+2arctanet/2-Ct24112superscripte2t114superscriptet21superscriptet212superscriptet2C\displaystyle-\frac{t}{24}+\frac{1}{12}\log\left(e^{{2t}}-1\right)-\frac{1}{4}\log\left(\log\left(\frac{e^{{t/2}}+1}{e^{{t/2}}-1}\right)+2\arctan(e^{{t/2}})-C\right)
End of MathML
.

Hit id178251

  • Reviwer: smiao
  • Reviwer score: 1
  • Formulasearchengine score: 7100
  • Reference to collection: _PREFIX_/39/f015301.xhtml#id178251
found all required tokens in TeX $\displaystyle c\cdot\frac{e^{{-\delta(s-l)}}+e^{{\delta(s-l)}}}{e^{{-\delta l}}+e^{{\delta l}}}$ at pos:1997805(79%) CMML match: 0=apply[divide;apply[plus;apply[ csymbol[superscript];ci[e];apply[minus;apply[times;ci[δ];apply[minus;ci[s];ci[l]]]]];apply[ csymbol[superscript];ci[e];apply[times;ci[δ];apply[minus;ci[s];ci[l]]]]];apply[plus;apply[ csymbol[superscript];ci[e];apply[minus;apply[times;ci[δ];ci[l]]]];apply[ csymbol[superscript];ci[e];apply[times;ci[δ];ci[l]]]]]] 1=apply[minus;apply[times;ci[δ];apply[minus;ci[s];ci[l]]]]];apply[ csymbol[superscript];ci[e];apply[times;ci[δ];apply[minus;ci[s];ci[l]]]]];apply[plus;apply[ csymbol[superscript];ci[e];apply[minus;apply[times;ci[δ];ci[l]]]];apply[ csymbol[superscript];ci[e 2=apply[times;ci[δ 3=ci[l]]]]] PMML match: 0=mfrac[mrow[msup[mi[e];mrow[mo[-];mrow[mi[δ];mfenced[mrow[mi[s];mo[-];mi[l]]]]]];mo[+];msup[mi[e];mrow[mi[δ];mfenced[mrow[mi[s];mo[-];mi[l]]]]]];mrow[msup[mi[e];mrow[mo[-];mrow[mi[δ];mi[l]]]];mo[+];msup[mi[e];mrow[mi[δ];mi[l]]]]]]] 1=mrow[mo[-];mrow[mi[δ];mfenced[mrow[mi[s];mo[-];mi[l]]]]]];mo[+];msup[mi[e];mrow[mi[δ];mfenced[mrow[mi[s];mo[-];mi[l]]]]]];mrow[msup[mi[e];mrow[mo[-];mrow[mi[δ];mi[l]]] 2=msup[mi[e];mrow[mi[δ 3=mi[l]]]]]] Scoringfunction: ' + TeX_HIT_SCORE + CMML_SCORE * 1.0 + PMML_SCORE * 1.0 + NO_TEXT_SCORE + 1.9375 * TOKEN_SCORE[e] + 1.75 * TOKEN_SCORE[+] + 1.9921875 * TOKEN_SCORE[\] + 1.9375 * TOKEN_SCORE[^] + 1.5 * TOKEN_SCORE[frac] =+100.0+5000.0*1.0+2000.0*1.0+0.0+1.9375*0.307267883373706+1.75*0.0160883895861106+1.9921875*5.92879328325965E-4+1.9375*0.00338742677192689+1.5*0.0366287198730455 = 7100.68617355178' final score ~ 7100 reviewer: smiao gave 1
Rendered MathML:
ce-δs-l+eδs-le-δl+eδlcsuperscripteδslsuperscripteδslsuperscripteδlsuperscripteδl\displaystyle c\cdot\frac{e^{{-\delta(s-l)}}+e^{{\delta(s-l)}}}{e^{{-\delta l}}+e^{{\delta l}}}
End of MathML
.

Hit id55374

  • Reviwer: smiao
  • Reviwer score: 1
  • Formulasearchengine score: 7100
  • Reference to collection: _PREFIX_/72/f028568.xhtml#id55374
found all required tokens in TeX $f(x,T_{e})=\left(x\frac{e^{x}+1}{e^{x}-1}-4\right)\left(1+\delta _{{SZE}}(x,T_{e})\right),$ at pos:30927(8%) CMML match: 0=apply[divide;apply[plus;apply[ csymbol[superscript];ci[e];ci[x]];cn[1]];apply[minus;apply[ csymbol[superscript];ci[e];ci[x]];cn[1]]]];cn[4]];apply[plus;cn[1];apply[times;apply[ csymbol[subscript];ci[δ];apply[times;ci[S];ci[Z];ci[E]]];apply[interval;ci[x];apply[ csymbol[subscript];ci[T];ci[e]]]]]]] 1=ci[x]];cn[1]];apply[minus;apply[ csymbol[superscript];ci[e];ci[x]];cn[1]]]];cn[4]];apply[plus;cn[1];apply[times;apply[ csymbol[subscript];ci[δ];apply[times;ci[S];ci[Z];ci[E]]];apply[interval;ci[x];apply[ csymbol[subscript 2=ci[T 3=ci[e]]]]]] PMML match: 0=mfrac[mrow[msup[mi[e];mi[x]];mo[+];mn[1]];mrow[msup[mi[e];mi[x]];mo[-];mn[1]]]];mo[-];mn[4]]];mfenced[mrow[mn[1];mo[+];mrow[msub[mi[δ];mrow[mi[S];mi[Z];mi[E]]];mfenced[mrow[mi[x];mo[,];msub[mi[T];mi[e]]]]]]]]];mo[,]] 1=mi[x]];mo[+];mn[1]];mrow[msup[mi[e];mi[x]];mo[-];mn[1]]]];mo[-];mn[4]]];mfenced[mrow[mn[1 2=mrow[msub[mi[δ];mrow[mi[S];mi[Z];mi[E]]];mfenced[mrow[mi[x];mo[,];msub[mi[T];mi[e]]]]]]]] 3=mo[,] Scoringfunction: ' + TeX_HIT_SCORE + CMML_SCORE * 1.0 + PMML_SCORE * 1.0 + NO_TEXT_SCORE + 1.9375 * TOKEN_SCORE[e] + 1.75 * TOKEN_SCORE[+] + 1.984375 * TOKEN_SCORE[\] + 1.75 * TOKEN_SCORE[^] + 1.5 * TOKEN_SCORE[frac] =+100.0+5000.0*1.0+2000.0*1.0+0.0+1.9375*0.307267883373706+1.75*0.0160883895861106+1.984375*5.92879328325965E-4+1.75*0.00338742677192689+1.5*0.0366287198730455 = 7100.6855337773895' final score ~ 7100 reviewer: smiao gave 1
Rendered MathML:
fx,Te=xex+1ex-1-41+δSZEx,Te,fxsubscriptTexsuperscriptex1superscriptex141subscriptδSZExsubscriptTef(x,T_{e})=\left(x\frac{e^{x}+1}{e^{x}-1}-4\right)\left(1+\delta _{{SZE}}(x,T_{e})\right),
End of MathML
.

Hit id57602

  • Reviwer: smiao
  • Reviwer score: 1
  • Formulasearchengine score: 7100
  • Reference to collection: _PREFIX_/48/f019048.xhtml#id57602
found all required tokens in TeX $\cosh\theta=\frac{e^{{j\theta}}+e^{{-j\theta}}}{2},\;\;\sinh\theta=\frac{e^{{j\theta}}-e^{{-j\theta}}}{2j}\;.$ at pos:62102(30%) CMML match: 0=apply[divide;apply[plus;apply[ csymbol[superscript];ci[e];apply[times;ci[j];ci[θ]]];apply[ csymbol[superscript];ci[e];apply[minus;apply[times;ci[j];ci[θ]]]]];cn[2]]];apply[eq;apply[sinh;ci[θ]];apply[divide;apply[minus;apply[ csymbol[superscript];ci[e];apply[times;ci[j];ci[θ]]];apply[ csymbol[superscript];ci[e];apply[minus;apply[times;ci[j];ci[θ]]]]];apply[times;cn[2];ci[j]]]]] 1=apply[times;ci[j];ci[θ]]];apply[ csymbol[superscript];ci[e];apply[minus;apply[times;ci[j];ci[θ]]]]];cn[2]]];apply[eq;apply[sinh;ci[θ]];apply[divide;apply[minus;apply[ csymbol[superscript];ci[e];apply[times;ci[j];ci[θ]]];apply[ csymbol[superscript];ci[e];apply[minus;apply[times;ci[j];ci[θ]]]] 2=apply[times;cn[2 3=ci[j]]]] PMML match: 0=mfrac[mrow[msup[mi[e];mrow[mi[j];mi[θ]]];mo[+];msup[mi[e];mrow[mo[-];mrow[mi[j];mi[θ]]]]];mn[2]]];mo[,];mrow[mrow[mi[sinh];mi[θ]];mo[=];mfrac[mrow[msup[mi[e];mrow[mi[j];mi[θ]]];mo[-];msup[mi[e];mrow[mo[-];mrow[mi[j];mi[θ]]]]];mrow[mn[2];mi[j]]]]];mo[.]] 1=mrow[mi[j];mi[θ]] 2=msup[mi[e];mrow[mo[-];mrow[mi[j];mi[θ]]]]];mn[2]]];mo[,];mrow[mrow[mi[sinh];mi[θ]];mo[=];mfrac[mrow[msup[mi[e];mrow[mi[j];mi[θ]]];mo[-];msup[mi[e];mrow[mo[-];mrow[mi[j];mi[θ]]]]];mrow[mn[2];mi[j]]]] 3=mo[.] Scoringfunction: ' + TeX_HIT_SCORE + CMML_SCORE * 1.0 + PMML_SCORE * 1.0 + NO_TEXT_SCORE + 1.9375 * TOKEN_SCORE[e] + 1.5 * TOKEN_SCORE[+] + 1.9998779296875 * TOKEN_SCORE[\] + 1.9375 * TOKEN_SCORE[^] + 1.75 * TOKEN_SCORE[frac] =+100.0+5000.0*1.0+2000.0*1.0+0.0+1.9375*0.307267883373706+1.5*0.0160883895861106+1.9998779296875*5.92879328325965E-4+1.9375*0.00338742677192689+1.75*0.0366287198730455 = 7100.691313193848' final score ~ 7100 reviewer: smiao gave 1
Rendered MathML:
coshθ=ejθ+e-jθ2,sinhθ=ejθ-e-jθ2j.θsuperscriptejθsuperscriptejθ2θsuperscriptejθsuperscriptejθ2j\cosh\theta=\frac{e^{{j\theta}}+e^{{-j\theta}}}{2},\;\;\sinh\theta=\frac{e^{{j\theta}}-e^{{-j\theta}}}{2j}\;.
End of MathML
.

Hit id59930

  • Reviwer: smiao
  • Reviwer score: 1
  • Formulasearchengine score: 7100
  • Reference to collection: _PREFIX_/212/f084589.xhtml#id59930
found all required tokens in TeX $\frac{e^{{-\chi _{E}|y-y^{{\prime}}|}}+e^{{\chi _{E}|y-y^{{\prime}}|}}}{2\chi _{E}(e^{{\chi _{E}(2\pi R)}}-1)}\ \rightarrow\ \frac{1}{2\chi _{E}\, e^{{\chi _{E}(2\pi R-|y-y^{{\prime}}|)}}}\qquad\mathrm{for}\quad\chi _{E}\gg R^{{-1}}\ .$ at pos:101545(9%) CMML match: 0=apply[divide;apply[plus;apply[ csymbol[superscript];ci[e];apply[minus;apply[times;apply[ csymbol[subscript];ci[χ];ci[E]];apply[abs;apply[minus;ci[y];apply[ csymbol[superscript];ci[y];ci[′]]]]]]];apply[ csymbol[superscript];ci[e];apply[times;apply[ csymbol[subscript];ci[χ];ci[E]];apply[abs;apply[minus;ci[y];apply[ csymbol[superscript];ci[y];ci[′]]]]]]];apply[times;cn[2];apply[ csymbol[subscript];ci[χ];ci[E]];apply[minus;apply[ csymbol[superscript];ci[e];apply[times;apply[ csymbol[subscript];ci[χ];ci[E]];apply[times;cn[2];ci[π];ci[R]]]];cn[1]]]];apply[times;apply[divide;cn[1];apply[times;cn[2];apply[ csymbol[subscript];ci[χ];ci[E]];apply[ csymbol[superscript];ci[e];apply[times;apply[ csymbol[subscript];ci[χ];ci[E]];apply[minus;apply[times;cn[2];ci[π];ci[R]];apply[abs;apply[minus;ci[y];apply[ csymbol[superscript];ci[y];ci[′]]]]]]]]];ci[for];apply[ csymbol[subscript];ci[χ];ci[E]]]];apply[ ci[≫];share;apply[ csymbol[superscript];ci[R];apply[minus;cn[1]]]]] 1=apply[minus;apply[times;apply[ csymbol[subscript];ci[χ];ci[E]];apply[abs;apply[minus;ci[y];apply[ csymbol[superscript];ci[y];ci[′]]]]]]];apply[ csymbol[superscript];ci[e];apply[times;apply[ csymbol[subscript];ci[χ];ci[E]];apply[abs;apply[minus;ci[y];apply[ csymbol[superscript];ci[y];ci[′]]]]]]];apply[times;cn[2];apply[ csymbol[subscript];ci[χ];ci[E]];apply[minus;apply[ csymbol[superscript];ci[e];apply[times;apply[ csymbol[subscript];ci[χ];ci[E]];apply[times;cn[2];ci[π];ci[R]]]];cn[1]]]];apply[times;apply[divide;cn[1];apply[times;cn[2];apply[ csymbol[subscript];ci[χ];ci[E]];apply[ csymbol[superscript];ci[e];apply[times;apply[ csymbol[subscript];ci[χ];ci[E]];apply[minus;apply[times;cn[2];ci[π];ci[R]];apply[abs;apply[minus;ci[y];apply[ csymbol[superscript];ci[y];ci[′]]]]]]]]];ci[for];apply[ csymbol[subscript];ci[χ];ci[E]]]];apply[ ci[≫];share;apply[ csymbol[superscript 2=ci[R 3=apply[minus;cn[1]]]] PMML match: 0=mfrac[mrow[msup[mi[e];mrow[mo[-];mrow[msub[mi[χ];mi[E]];mfenced[mrow[mi[y];mo[-];msup[mi[y];mo[′]]]]]]];mo[+];msup[mi[e];mrow[msub[mi[χ];mi[E]];mfenced[mrow[mi[y];mo[-];msup[mi[y];mo[′]]]]]]];mrow[mn[2];msub[mi[χ];mi[E]];mfenced[mrow[msup[mi[e];mrow[msub[mi[χ];mi[E]];mfenced[mrow[mn[2];mi[π];mi[R]]]]];mo[-];mn[1]]]]];mo[→];mrow[mfrac[mn[1];mrow[mn[2];msub[mi[χ];mi[E]];msup[mi[e];mrow[msub[mi[χ];mi[E]];mfenced[mrow[mrow[mn[2];mi[π];mi[R]];mo[-];mfenced[mrow[mi[y];mo[-];msup[mi[y];mo[′]]]]]]]]]];mi[for];msub[mi[χ];mi[E]]];mo[≫];msup[mi[R];mrow[mo[-];mn[1]]]];mo[.]] 1=mrow[mo[-];mrow[msub[mi[χ];mi[E]];mfenced[mrow[mi[y];mo[-];msup[mi[y];mo[′]]]]]] 2=msup[mi[e];mrow[msub[mi[χ];mi[E]];mfenced[mrow[mi[y];mo[-];msup[mi[y];mo[′]]]]]]];mrow[mn[2];msub[mi[χ];mi[E]];mfenced[mrow[msup[mi[e];mrow[msub[mi[χ];mi[E]];mfenced[mrow[mn[2];mi[π];mi[R]]]]];mo[-];mn[1]]]]];mo[→];mrow[mfrac[mn[1];mrow[mn[2];msub[mi[χ];mi[E]];msup[mi[e];mrow[msub[mi[χ];mi[E]];mfenced[mrow[mrow[mn[2];mi[π];mi[R]];mo[-];mfenced[mrow[mi[y];mo[-];msup[mi[y];mo[′]]]]]]]]]];mi[for];msub[mi[χ];mi[E]]];mo[≫];msup[mi[R];mrow[mo[-];mn[1]]] 3=mo[.] Scoringfunction: ' + TeX_HIT_SCORE + CMML_SCORE * 1.0 + PMML_SCORE * 1.0 + NO_TEXT_SCORE + 1.9375 * TOKEN_SCORE[e] + 1.5 * TOKEN_SCORE[+] + 1.9999998807907104 * TOKEN_SCORE[\] + 1.99609375 * TOKEN_SCORE[^] + 1.75 * TOKEN_SCORE[frac] =+100.0+5000.0*1.0+2000.0*1.0+0.0+1.9375*0.307267883373706+1.5*0.0160883895861106+1.9999998807907104*5.92879328325965E-4+1.99609375*0.00338742677192689+1.75*0.0366287198730455 = 7100.691511748188' final score ~ 7100 reviewer: smiao gave 1
Rendered MathML:
e-χEy-y+eχEy-y2χEeχE2πR-112χEeχE2πR-y-yforχER-1.superscriptesubscriptχEysuperscriptysuperscriptesubscriptχEysuperscripty2subscriptχEsuperscriptesubscriptχE2πR112subscriptχEsuperscriptesubscriptχE2πRysuperscriptyforsubscriptχEsuperscriptR1\frac{e^{{-\chi _{E}|y-y^{{\prime}}|}}+e^{{\chi _{E}|y-y^{{\prime}}|}}}{2\chi _{E}(e^{{\chi _{E}(2\pi R)}}-1)}\ \rightarrow\ \frac{1}{2\chi _{E}\, e^{{\chi _{E}(2\pi R-|y-y^{{\prime}}|)}}}\qquad\mathrm{for}\quad\chi _{E}\gg R^{{-1}}\ .
End of MathML
.

Hit id60469

  • Reviwer: smiao
  • Reviwer score: 1
  • Formulasearchengine score: 7100
  • Reference to collection: _PREFIX_/140/f055958.xhtml#id60469
found all required tokens in TeX $y(x)=\frac{e^{{(-1+H)/T}}+e^{{(1-H)/T}}x}{e^{{(1+H)/T}}+e^{{(-1-H)/T}}x}.$ at pos:107966(31%) CMML match: 0=apply[divide;apply[plus;apply[ csymbol[superscript];ci[e];apply[divide;apply[plus;apply[minus;cn[1]];ci[H]];ci[T]]];apply[times;apply[ csymbol[superscript];ci[e];apply[divide;apply[minus;cn[1];ci[H]];ci[T]]];ci[x]]];apply[plus;apply[ csymbol[superscript];ci[e];apply[divide;apply[plus;cn[1];ci[H]];ci[T]]];apply[times;apply[ csymbol[superscript];ci[e];apply[divide;apply[minus;apply[minus;cn[1]];ci[H]];ci[T]]];ci[x]]]]] 1=apply[divide;apply[plus;apply[minus;cn[1]];ci[H]];ci[T]]];apply[times;apply[ csymbol[superscript];ci[e];apply[divide;apply[minus;cn[1];ci[H]];ci[T]]];ci[x]]];apply[plus;apply[ csymbol[superscript];ci[e];apply[divide;apply[plus;cn[1];ci[H]];ci[T]]];apply[times;apply[ csymbol[superscript];ci[e];apply[divide;apply[minus;apply[minus;cn[1]];ci[H] 2=ci[T]] 3=ci[x]]]] PMML match: 0=mfrac[mrow[msup[mi[e];mrow[mfenced[mrow[mo[-];mn[1];mo[+];mi[H]]];mo[/];mi[T]]];mo[+];mrow[msup[mi[e];mrow[mfenced[mrow[mn[1];mo[-];mi[H]]];mo[/];mi[T]]];mi[x]]];mrow[msup[mi[e];mrow[mfenced[mrow[mn[1];mo[+];mi[H]]];mo[/];mi[T]]];mo[+];mrow[msup[mi[e];mrow[mfenced[mrow[mo[-];mn[1];mo[-];mi[H]]];mo[/];mi[T]]];mi[x]]]]];mo[.]] 1=mrow[mfenced[mrow[mo[-];mn[1];mo[+];mi[H]]];mo[/];mi[T]]];mo[+];mrow[msup[mi[e];mrow[mfenced[mrow[mn[1];mo[-];mi[H]]];mo[/];mi[T]]];mi[x]]];mrow[msup[mi[e];mrow[mfenced[mrow[mn[1];mo[+];mi[H]]];mo[/];mi[T]] 2=mrow[msup[mi[e];mrow[mfenced[mrow[mo[-];mn[1];mo[-];mi[H]]];mo[/];mi[T]]];mi[x]]]] 3=mo[.] Scoringfunction: ' + TeX_HIT_SCORE + CMML_SCORE * 1.0 + PMML_SCORE * 1.0 + NO_TEXT_SCORE + 1.9375 * TOKEN_SCORE[e] + 1.9375 * TOKEN_SCORE[+] + 1.5 * TOKEN_SCORE[\] + 1.9375 * TOKEN_SCORE[^] + 1.5 * TOKEN_SCORE[frac] =+100.0+5000.0*1.0+2000.0*1.0+0.0+1.9375*0.307267883373706+1.9375*0.0160883895861106+1.5*5.92879328325965E-4+1.9375*0.00338742677192689+1.5*0.0366287198730455 = 7100.688898317032' final score ~ 7100 reviewer: smiao gave 1
Rendered MathML:
yx=e-1+H/T+e1-H/Txe1+H/T+e-1-H/Tx.yxsuperscripte1HTsuperscripte1HTxsuperscripte1HTsuperscripte1HTxy(x)=\frac{e^{{(-1+H)/T}}+e^{{(1-H)/T}}x}{e^{{(1+H)/T}}+e^{{(-1-H)/T}}x}.
End of MathML
.

Hit id68486

  • Reviwer: smiao
  • Reviwer score: 1
  • Formulasearchengine score: 7100
  • Reference to collection: _PREFIX_/138/f055006.xhtml#id68486
found all required tokens in TeX $C_{{\omega}}(t)=\frac{e^{{\sqrt{-\omega}t}}+e^{{-\sqrt{-\omega}t}}}{2},\qquad S_{{\omega}}(t)=\frac{e^{{\sqrt{-\omega}t}}-e^{{-\sqrt{-\omega}t}}}{2\sqrt{-\omega}}.$ at pos:230807(35%) CMML match: 0=apply[divide;apply[plus;apply[ csymbol[superscript];ci[e];apply[times;apply[root;apply[minus;ci[ω]]];ci[t]]];apply[ csymbol[superscript];ci[e];apply[minus;apply[times;apply[root;apply[minus;ci[ω]]];ci[t]]]]];cn[2]]];apply[eq;apply[times;apply[ csymbol[subscript];ci[S];ci[ω]];ci[t]];apply[divide;apply[minus;apply[ csymbol[superscript];ci[e];apply[times;apply[root;apply[minus;ci[ω]]];ci[t]]];apply[ csymbol[superscript];ci[e];apply[minus;apply[times;apply[root;apply[minus;ci[ω]]];ci[t]]]]];apply[times;cn[2];apply[root;apply[minus;ci[ω]]]]]]] 1=apply[times;apply[root;apply[minus;ci[ω]]];ci[t]]];apply[ csymbol[superscript];ci[e];apply[minus;apply[times;apply[root;apply[minus;ci[ω]]];ci[t]]]]];cn[2]]];apply[eq;apply[times;apply[ csymbol[subscript];ci[S];ci[ω]];ci[t]];apply[divide;apply[minus;apply[ csymbol[superscript];ci[e];apply[times;apply[root;apply[minus;ci[ω]]];ci[t]]];apply[ csymbol[superscript];ci[e];apply[minus;apply[times;apply[root;apply[minus;ci[ω]]];ci[t]]]] 2=apply[times;cn[2 3=apply[root;apply[minus;ci[ω]]]]]] PMML match: 0=mfrac[mrow[msup[mi[e];mrow[msqrt[mrow[mo[-];mi[ω]]];mi[t]]];mo[+];msup[mi[e];mrow[mo[-];mrow[msqrt[mrow[mo[-];mi[ω]]];mi[t]]]]];mn[2]]];mo[,];mrow[mrow[msub[mi[S];mi[ω]];mfenced[mi[t]]];mo[=];mfrac[mrow[msup[mi[e];mrow[msqrt[mrow[mo[-];mi[ω]]];mi[t]]];mo[-];msup[mi[e];mrow[mo[-];mrow[msqrt[mrow[mo[-];mi[ω]]];mi[t]]]]];mrow[mn[2];msqrt[mrow[mo[-];mi[ω]]]]]]];mo[.]] 1=mrow[msqrt[mrow[mo[-];mi[ω]]];mi[t]] 2=msup[mi[e];mrow[mo[-];mrow[msqrt[mrow[mo[-];mi[ω]]];mi[t]]]]];mn[2]]];mo[,];mrow[mrow[msub[mi[S];mi[ω]];mfenced[mi[t]]];mo[=];mfrac[mrow[msup[mi[e];mrow[msqrt[mrow[mo[-];mi[ω]]];mi[t]]];mo[-];msup[mi[e];mrow[mo[-];mrow[msqrt[mrow[mo[-];mi[ω]]];mi[t]]]]];mrow[mn[2];msqrt[mrow[mo[-];mi[ω]]]]]] 3=mo[.] Scoringfunction: ' + TeX_HIT_SCORE + CMML_SCORE * 1.0 + PMML_SCORE * 1.0 + NO_TEXT_SCORE + 1.9375 * TOKEN_SCORE[e] + 1.5 * TOKEN_SCORE[+] + 1.999969482421875 * TOKEN_SCORE[\] + 1.9375 * TOKEN_SCORE[^] + 1.75 * TOKEN_SCORE[frac] =+100.0+5000.0*1.0+2000.0*1.0+0.0+1.9375*0.307267883373706+1.5*0.0160883895861106+1.999969482421875*5.92879328325965E-4+1.9375*0.00338742677192689+1.75*0.0366287198730455 = 7100.691313248128' final score ~ 7100 reviewer: smiao gave 1
Rendered MathML:
Cωt=e-ωt+e--ωt2,Sωt=e-ωt-e--ωt2-ω.subscriptCωtsuperscripteωtsuperscripteωt2subscriptSωtsuperscripteωtsuperscripteωt2ωC_{{\omega}}(t)=\frac{e^{{\sqrt{-\omega}t}}+e^{{-\sqrt{-\omega}t}}}{2},\qquad S_{{\omega}}(t)=\frac{e^{{\sqrt{-\omega}t}}-e^{{-\sqrt{-\omega}t}}}{2\sqrt{-\omega}}.
End of MathML
.

Hit id68936

  • Reviwer: smiao
  • Reviwer score: 1
  • Formulasearchengine score: 7100
  • Reference to collection: _PREFIX_/121/f048333.xhtml#id68936
found all required tokens in TeX $\cos\theta=\frac{e^{{i\theta}}+e^{{-i\theta}}}{2},\quad\sin\theta=\frac{e^{{i\theta}}-e^{{-i\theta}}}{2i}$ at pos:243364(36%) CMML match: 0=apply[divide;apply[plus;apply[ csymbol[superscript];ci[e];apply[times;ci[i];ci[θ]]];apply[ csymbol[superscript];ci[e];apply[minus;apply[times;ci[i];ci[θ]]]]];cn[2]]];apply[eq;apply[sin;ci[θ]];apply[divide;apply[minus;apply[ csymbol[superscript];ci[e];apply[times;ci[i];ci[θ]]];apply[ csymbol[superscript];ci[e];apply[minus;apply[times;ci[i];ci[θ]]]]];apply[times;cn[2];ci[i]]]]] 1=apply[times;ci[i];ci[θ]]];apply[ csymbol[superscript];ci[e];apply[minus;apply[times;ci[i];ci[θ]]]]];cn[2]]];apply[eq;apply[sin;ci[θ]];apply[divide;apply[minus;apply[ csymbol[superscript];ci[e];apply[times;ci[i];ci[θ]]];apply[ csymbol[superscript];ci[e];apply[minus;apply[times;ci[i];ci[θ]]]] 2=apply[times;cn[2 3=ci[i]]]] PMML match: 0=mfrac[mrow[msup[mi[e];mrow[mi[i];mi[θ]]];mo[+];msup[mi[e];mrow[mo[-];mrow[mi[i];mi[θ]]]]];mn[2]]];mo[,];mrow[mrow[mi[sin];mi[θ]];mo[=];mfrac[mrow[msup[mi[e];mrow[mi[i];mi[θ]]];mo[-];msup[mi[e];mrow[mo[-];mrow[mi[i];mi[θ]]]]];mrow[mn[2];mi[i]]]]] 1=mrow[mi[i];mi[θ]] 2=msup[mi[e];mrow[mo[-];mrow[mi[i];mi[θ]]]]];mn[2]]];mo[,];mrow[mrow[mi[sin];mi[θ]];mo[=];mfrac[mrow[msup[mi[e];mrow[mi[i];mi[θ]]];mo[-];msup[mi[e];mrow[mo[-];mrow[mi[i];mi[θ]]]]];mrow[mn[2 3=mi[i]]]] Scoringfunction: ' + TeX_HIT_SCORE + CMML_SCORE * 1.0 + PMML_SCORE * 1.0 + NO_TEXT_SCORE + 1.9375 * TOKEN_SCORE[e] + 1.5 * TOKEN_SCORE[+] + 1.99951171875 * TOKEN_SCORE[\] + 1.9375 * TOKEN_SCORE[^] + 1.75 * TOKEN_SCORE[frac] =+100.0+5000.0*1.0+2000.0*1.0+0.0+1.9375*0.307267883373706+1.5*0.0160883895861106+1.99951171875*5.92879328325965E-4+1.9375*0.00338742677192689+1.75*0.0366287198730455 = 7100.691312976729' final score ~ 7100 reviewer: smiao gave 1
Rendered MathML:
cosθ=eiθ+e-iθ2,sinθ=eiθ-e-iθ2iθsuperscripteiθsuperscripteiθ2θsuperscripteiθsuperscripteiθ2i\cos\theta=\frac{e^{{i\theta}}+e^{{-i\theta}}}{2},\quad\sin\theta=\frac{e^{{i\theta}}-e^{{-i\theta}}}{2i}
End of MathML
.

Hit id69752

  • Reviwer: smiao
  • Reviwer score: 1
  • Formulasearchengine score: 7100
  • Reference to collection: _PREFIX_/140/f055958.xhtml#id69752
found all required tokens in TeX $\displaystyle+\frac{1}{2\sinh(2/T)}\sum _{k}P(k)k\frac{e^{{-h}}+e^{{-(k-1)h}}}{1+e^{{-kh}}}\,.$ at pos:252806(73%) CMML match: 0=apply[divide;apply[plus;apply[ csymbol[superscript];ci[e];apply[minus;ci[h]]];apply[ csymbol[superscript];ci[e];apply[minus;apply[times;apply[minus;ci[k];cn[1]];ci[h]]]]];apply[plus;cn[1];apply[ csymbol[superscript];ci[e];apply[minus;apply[times;ci[k];ci[h]]]]]]]]]] 1=apply[minus;ci[h]]];apply[ csymbol[superscript];ci[e];apply[minus;apply[times;apply[minus;ci[k];cn[1]];ci[h]]]]];apply[plus;cn[1];apply[ csymbol[superscript];ci[e 2=apply[minus;apply[times;ci[k 3=ci[h]]]]]]]]] PMML match: 0=mfrac[mrow[msup[mi[e];mrow[mo[-];mi[h]]];mo[+];msup[mi[e];mrow[mo[-];mrow[mfenced[mrow[mi[k];mo[-];mn[1]]];mi[h]]]]];mrow[mn[1];mo[+];msup[mi[e];mrow[mo[-];mrow[mi[k];mi[h]]]]]]]]]];mo[.]] 1=mrow[mo[-];mi[h]]];mo[+];msup[mi[e];mrow[mo[-];mrow[mfenced[mrow[mi[k];mo[-];mn[1]]];mi[h]]]]];mrow[mn[1 2=msup[mi[e];mrow[mo[-];mrow[mi[k];mi[h]]]]]]]]] 3=mo[.] Scoringfunction: ' + TeX_HIT_SCORE + CMML_SCORE * 1.0 + PMML_SCORE * 1.0 + NO_TEXT_SCORE + 1.875 * TOKEN_SCORE[e] + 1.875 * TOKEN_SCORE[+] + 1.984375 * TOKEN_SCORE[\] + 1.875 * TOKEN_SCORE[^] + 1.75 * TOKEN_SCORE[frac] =+100.0+5000.0*1.0+2000.0*1.0+0.0+1.875*0.307267883373706+1.875*0.0160883895861106+1.984375*5.92879328325965E-4+1.875*0.00338742677192689+1.75*0.0366287198730455 = 7100.677921191691' final score ~ 7100 reviewer: smiao gave 1
Rendered MathML:
+12sinh2/TkPkke-h+e-k-1h1+e-kh.122TsubscriptkPkksuperscriptehsuperscriptek1h1superscriptekh\displaystyle+\frac{1}{2\sinh(2/T)}\sum _{k}P(k)k\frac{e^{{-h}}+e^{{-(k-1)h}}}{1+e^{{-kh}}}\,.
End of MathML
.

Hit id76263

  • Reviwer: smiao
  • Reviwer score: 1
  • Formulasearchengine score: 7100
  • Reference to collection: _PREFIX_/4/f001392.xhtml#id76263
found all required tokens in TeX $\cosh\theta=\frac{e^{{j\theta}}+e^{{-j\theta}}}{2},\;\;\sinh\theta=\frac{e^{{j\theta}}-e^{{-j\theta}}}{2j}\;.$ at pos:354294(78%) CMML match: 0=apply[divide;apply[plus;apply[ csymbol[superscript];ci[e];apply[times;ci[j];ci[θ]]];apply[ csymbol[superscript];ci[e];apply[minus;apply[times;ci[j];ci[θ]]]]];cn[2]]];apply[eq;apply[sinh;ci[θ]];apply[divide;apply[minus;apply[ csymbol[superscript];ci[e];apply[times;ci[j];ci[θ]]];apply[ csymbol[superscript];ci[e];apply[minus;apply[times;ci[j];ci[θ]]]]];apply[times;cn[2];ci[j]]]]] 1=apply[times;ci[j];ci[θ]]];apply[ csymbol[superscript];ci[e];apply[minus;apply[times;ci[j];ci[θ]]]]];cn[2]]];apply[eq;apply[sinh;ci[θ]];apply[divide;apply[minus;apply[ csymbol[superscript];ci[e];apply[times;ci[j];ci[θ]]];apply[ csymbol[superscript];ci[e];apply[minus;apply[times;ci[j];ci[θ]]]] 2=apply[times;cn[2 3=ci[j]]]] PMML match: 0=mfrac[mrow[msup[mi[e];mrow[mi[j];mi[θ]]];mo[+];msup[mi[e];mrow[mo[-];mrow[mi[j];mi[θ]]]]];mn[2]]];mo[,];mrow[mrow[mi[sinh];mi[θ]];mo[=];mfrac[mrow[msup[mi[e];mrow[mi[j];mi[θ]]];mo[-];msup[mi[e];mrow[mo[-];mrow[mi[j];mi[θ]]]]];mrow[mn[2];mi[j]]]]];mo[.]] 1=mrow[mi[j];mi[θ]] 2=msup[mi[e];mrow[mo[-];mrow[mi[j];mi[θ]]]]];mn[2]]];mo[,];mrow[mrow[mi[sinh];mi[θ]];mo[=];mfrac[mrow[msup[mi[e];mrow[mi[j];mi[θ]]];mo[-];msup[mi[e];mrow[mo[-];mrow[mi[j];mi[θ]]]]];mrow[mn[2];mi[j]]]] 3=mo[.] Scoringfunction: ' + TeX_HIT_SCORE + CMML_SCORE * 1.0 + PMML_SCORE * 1.0 + NO_TEXT_SCORE + 1.9375 * TOKEN_SCORE[e] + 1.5 * TOKEN_SCORE[+] + 1.9998779296875 * TOKEN_SCORE[\] + 1.9375 * TOKEN_SCORE[^] + 1.75 * TOKEN_SCORE[frac] =+100.0+5000.0*1.0+2000.0*1.0+0.0+1.9375*0.307267883373706+1.5*0.0160883895861106+1.9998779296875*5.92879328325965E-4+1.9375*0.00338742677192689+1.75*0.0366287198730455 = 7100.691313193848' final score ~ 7100 reviewer: smiao gave 1
Rendered MathML:
coshθ=ejθ+e-jθ2,sinhθ=ejθ-e-jθ2j.θsuperscriptejθsuperscriptejθ2θsuperscriptejθsuperscriptejθ2j\cosh\theta=\frac{e^{{j\theta}}+e^{{-j\theta}}}{2},\;\;\sinh\theta=\frac{e^{{j\theta}}-e^{{-j\theta}}}{2j}\;.
End of MathML
.

Hit id84367

  • Reviwer: smiao
  • Reviwer score: 1
  • Formulasearchengine score: 7100
  • Reference to collection: _PREFIX_/226/f090084.xhtml#id84367
found all required tokens in TeX $n_{{13}}=\left(\frac{\mathrm{e}^{{-\beta U}}+\mathrm{e}^{{\beta\eta}}}{Z}\right)^{{1/2}}.$ at pos:469341(80%) CMML match: 0=apply[divide;apply[plus;apply[ csymbol[superscript];ci[e];apply[minus;apply[times;ci[β];ci[U]]]];apply[ csymbol[superscript];ci[e];apply[times;ci[β];ci[η]]]];ci[Z]];apply[divide;cn[1];cn[2]]]] 1=apply[minus;apply[times;ci[β];ci[U]]]];apply[ csymbol[superscript];ci[e];apply[times;ci[β];ci[η]]]];ci[Z] 2=apply[divide;cn[1 3=cn[2]]] PMML match: 0=mfrac[mrow[msup[mi[e];mrow[mo[-];mrow[mi[β];mi[U]]]];mo[+];msup[mi[e];mrow[mi[β];mi[η]]]];mi[Z]]];mrow[mn[1];mo[/];mn[2]]]];mo[.]] 1=mrow[mo[-];mrow[mi[β];mi[U]]] 2=msup[mi[e];mrow[mi[β];mi[η]]]];mi[Z]]];mrow[mn[1];mo[/];mn[2]]] 3=mo[.] Scoringfunction: ' + TeX_HIT_SCORE + CMML_SCORE * 1.0 + PMML_SCORE * 1.0 + NO_TEXT_SCORE + 1.75 * TOKEN_SCORE[e] + 1.5 * TOKEN_SCORE[+] + 1.99609375 * TOKEN_SCORE[\] + 1.875 * TOKEN_SCORE[^] + 1.5 * TOKEN_SCORE[frac] =+100.0+5000.0*1.0+2000.0*1.0+0.0+1.75*0.307267883373706+1.5*0.0160883895861106+1.99609375*5.92879328325965E-4+1.875*0.00338742677192689+1.5*0.0366287198730455 = 7100.62432932801' final score ~ 7100 reviewer: smiao gave 1
Rendered MathML:
n13=e-βU+eβηZ1/2.subscriptn13superscriptsuperscripteβUsuperscripteβηZ12n_{{13}}=\left(\frac{\mathrm{e}^{{-\beta U}}+\mathrm{e}^{{\beta\eta}}}{Z}\right)^{{1/2}}.
End of MathML
.

Hit id87708

  • Reviwer: smiao
  • Reviwer score: 1
  • Formulasearchengine score: 7100
  • Reference to collection: _PREFIX_/226/f090084.xhtml#id87708
found all required tokens in TeX $n_{{12}}=\left(\frac{\mathrm{e}^{{-\beta U}}+\mathrm{e}^{{-\beta\eta}}}{Z}\right)^{{1/2}}.$ at pos:518963(89%) CMML match: 0=apply[divide;apply[plus;apply[ csymbol[superscript];ci[e];apply[minus;apply[times;ci[β];ci[U]]]];apply[ csymbol[superscript];ci[e];apply[minus;apply[times;ci[β];ci[η]]]]];ci[Z]];apply[divide;cn[1];cn[2]]]] 1=apply[minus;apply[times;ci[β];ci[U]]]];apply[ csymbol[superscript];ci[e];apply[minus;apply[times;ci[β];ci[η]]]]];ci[Z] 2=apply[divide;cn[1 3=cn[2]]] PMML match: 0=mfrac[mrow[msup[mi[e];mrow[mo[-];mrow[mi[β];mi[U]]]];mo[+];msup[mi[e];mrow[mo[-];mrow[mi[β];mi[η]]]]];mi[Z]]];mrow[mn[1];mo[/];mn[2]]]];mo[.]] 1=mrow[mo[-];mrow[mi[β];mi[U]]] 2=msup[mi[e];mrow[mo[-];mrow[mi[β];mi[η]]]]];mi[Z]]];mrow[mn[1];mo[/];mn[2]]] 3=mo[.] Scoringfunction: ' + TeX_HIT_SCORE + CMML_SCORE * 1.0 + PMML_SCORE * 1.0 + NO_TEXT_SCORE + 1.75 * TOKEN_SCORE[e] + 1.5 * TOKEN_SCORE[+] + 1.99609375 * TOKEN_SCORE[\] + 1.875 * TOKEN_SCORE[^] + 1.5 * TOKEN_SCORE[frac] =+100.0+5000.0*1.0+2000.0*1.0+0.0+1.75*0.307267883373706+1.5*0.0160883895861106+1.99609375*5.92879328325965E-4+1.875*0.00338742677192689+1.5*0.0366287198730455 = 7100.62432932801' final score ~ 7100 reviewer: smiao gave 1
Rendered MathML:
n12=e-βU+e-βηZ1/2.subscriptn12superscriptsuperscripteβUsuperscripteβηZ12n_{{12}}=\left(\frac{\mathrm{e}^{{-\beta U}}+\mathrm{e}^{{-\beta\eta}}}{Z}\right)^{{1/2}}.
End of MathML
.

Hit idp23422448

  • Reviwer: smiao
  • Reviwer score: 1
  • Formulasearchengine score: 7100
  • Reference to collection: _PREFIX_/205/f081641.xhtml#idp23422448
found all required tokens in TeX $\lim _{{n\rightarrow\infty}}z_{{\lfloor n\delta\rfloor}}=\lim _{{n\rightarrow\infty}}\frac{e^{{-b_{n}\delta}}+\frac{1-e^{{-b_{n}\delta}}}{b_{n}/n}}{n\delta}=\frac{1-e^{{-b\delta}}}{b\delta}.$ at pos:499527(16%) CMML match: 0=apply[divide;apply[plus;apply[ csymbol[superscript];ci[e];apply[minus;apply[times;apply[ csymbol[subscript];ci[b];ci[n]];ci[δ]]]];apply[divide;apply[minus;cn[1];apply[ csymbol[superscript];ci[e];apply[minus;apply[times;apply[ csymbol[subscript];ci[b];ci[n]];ci[δ]]]]];apply[divide;apply[ csymbol[subscript];ci[b];ci[n]];ci[n]]]];apply[times;ci[n];ci[δ]]]]];apply[eq;share;apply[divide;apply[minus;cn[1];apply[ csymbol[superscript];ci[e];apply[minus;apply[times;ci[b];ci[δ]]]]];apply[times;ci[b];ci[δ]]]]]] 1=apply[minus;apply[times;apply[ csymbol[subscript];ci[b];ci[n]];ci[δ]]]];apply[divide;apply[minus;cn[1];apply[ csymbol[superscript];ci[e];apply[minus;apply[times;apply[ csymbol[subscript];ci[b];ci[n]];ci[δ]]]]];apply[divide;apply[ csymbol[subscript];ci[b];ci[n]];ci[n]]]];apply[times;ci[n];ci[δ]]]]];apply[eq;share;apply[divide;apply[minus;cn[1];apply[ csymbol[superscript];ci[e];apply[minus;apply[times;ci[b];ci[δ]]]] 2=apply[times;ci[b 3=ci[δ]]]]] PMML match: 0=mfrac[mrow[msup[mi[e];mrow[mo[-];mrow[msub[mi[b];mi[n]];mi[δ]]]];mo[+];mfrac[mrow[mn[1];mo[-];msup[mi[e];mrow[mo[-];mrow[msub[mi[b];mi[n]];mi[δ]]]]];mrow[msub[mi[b];mi[n]];mo[/];mi[n]]]];mrow[mi[n];mi[δ]]]];mo[=];mfrac[mrow[mn[1];mo[-];msup[mi[e];mrow[mo[-];mrow[mi[b];mi[δ]]]]];mrow[mi[b];mi[δ]]]];mo[.]] 1=mrow[mo[-];mrow[msub[mi[b];mi[n]];mi[δ]]] 2=mfrac[mrow[mn[1];mo[-];msup[mi[e];mrow[mo[-];mrow[msub[mi[b];mi[n]];mi[δ]]]]];mrow[msub[mi[b];mi[n]];mo[/];mi[n]]]];mrow[mi[n];mi[δ]]]];mo[=];mfrac[mrow[mn[1];mo[-];msup[mi[e];mrow[mo[-];mrow[mi[b];mi[δ]]]]];mrow[mi[b];mi[δ]]] 3=mo[.] Scoringfunction: ' + TeX_HIT_SCORE + CMML_SCORE * 1.0 + PMML_SCORE * 1.0 + NO_TEXT_SCORE + 1.875 * TOKEN_SCORE[e] + 1.5 * TOKEN_SCORE[+] + 1.9999923706054688 * TOKEN_SCORE[\] + 1.875 * TOKEN_SCORE[^] + 1.875 * TOKEN_SCORE[frac] =+100.0+5000.0*1.0+2000.0*1.0+0.0+1.875*0.307267883373706+1.5*0.0160883895861106+1.9999923706054688*5.92879328325965E-4+1.875*0.00338742677192689+1.875*0.0366287198730455 = 7100.6764758947975' final score ~ 7100 reviewer: smiao gave 1
Rendered MathML:
limnznδ=limne-bnδ+1-e-bnδbn/nnδ=1-e-bδbδ.subscriptnsubscriptznδsubscriptnsuperscriptesubscriptbnδ1superscriptesubscriptbnδsubscriptbnnnδ1superscriptebδbδ\lim _{{n\rightarrow\infty}}z_{{\lfloor n\delta\rfloor}}=\lim _{{n\rightarrow\infty}}\frac{e^{{-b_{n}\delta}}+\frac{1-e^{{-b_{n}\delta}}}{b_{n}/n}}{n\delta}=\frac{1-e^{{-b\delta}}}{b\delta}.
End of MathML
.

Hit idp23676496

  • Reviwer: smiao
  • Reviwer score: 1
  • Formulasearchengine score: 7100
  • Reference to collection: _PREFIX_/127/f050718.xhtml#idp23676496
found all required tokens in TeX $\frac{1}{\psi}=\frac{{\rm E}_{2}(\tau _{{\rm d}})}{2}+\frac{e^{{-\tau _{{\rm d}}}}+\tau _{{\rm d}}{\rm E}_{2}(\tau _{{\rm d}})}{4\tau _{{\rm R}}}$ at pos:566702(47%) CMML match: 0=apply[divide;apply[plus;apply[ csymbol[superscript];ci[e];apply[minus;apply[ csymbol[subscript];ci[τ];ci[d]]]];apply[times;apply[ csymbol[subscript];ci[τ];ci[d]];apply[ csymbol[subscript];ci[E];cn[2]];apply[ csymbol[subscript];ci[τ];ci[d]]]];apply[times;cn[4];apply[ csymbol[subscript];ci[τ];ci[R]]]]]]] 1=apply[minus;apply[ csymbol[subscript];ci[τ];ci[d]]]];apply[times;apply[ csymbol[subscript];ci[τ];ci[d]];apply[ csymbol[subscript];ci[E];cn[2]];apply[ csymbol[subscript];ci[τ];ci[d]]]];apply[times;cn[4];apply[ csymbol[subscript 2=ci[τ 3=ci[R]]]]]] PMML match: 0=mfrac[mrow[msup[mi[e];mrow[mo[-];msub[mi[τ];mi[d]]]];mo[+];mrow[msub[mi[τ];mi[d]];msub[mi[E];mn[2]];mfenced[msub[mi[τ];mi[d]]]]];mrow[mn[4];msub[mi[τ];mi[R]]]]]] 1=mrow[mo[-];msub[mi[τ];mi[d]]] 2=mrow[msub[mi[τ];mi[d]];msub[mi[E];mn[2]];mfenced[msub[mi[τ];mi[d]]]]];mrow[mn[4];msub[mi[τ 3=mi[R]]]]] Scoringfunction: ' + TeX_HIT_SCORE + CMML_SCORE * 1.0 + PMML_SCORE * 1.0 + NO_TEXT_SCORE + 1.5 * TOKEN_SCORE[e] + 1.75 * TOKEN_SCORE[+] + 1.9999847412109375 * TOKEN_SCORE[\] + 1.5 * TOKEN_SCORE[^] + 1.875 * TOKEN_SCORE[frac] =+100.0+5000.0*1.0+2000.0*1.0+0.0+1.5*0.307267883373706+1.75*0.0160883895861106+1.9999847412109375*5.92879328325965E-4+1.5*0.00338742677192689+1.875*0.0366287198730455 = 7100.564002246367' final score ~ 7100 reviewer: smiao gave 1
Rendered MathML:
1ψ=E2τd2+e-τd+τdE2τd4τR1ψsubscriptE2subscriptτd2superscriptesubscriptτdsubscriptτdsubscriptE2subscriptτd4subscriptτR\frac{1}{\psi}=\frac{{\rm E}_{2}(\tau _{{\rm d}})}{2}+\frac{e^{{-\tau _{{\rm d}}}}+\tau _{{\rm d}}{\rm E}_{2}(\tau _{{\rm d}})}{4\tau _{{\rm R}}}
End of MathML
.

Hit idp680832

  • Reviwer: smiao
  • Reviwer score: 1
  • Formulasearchengine score: 7100
  • Reference to collection: _PREFIX_/111/f044349.xhtml#idp680832
found all required tokens in TeX $\displaystyle\frac{1}{Z_{{0}}}\{\frac{e^{{-\beta E_{{0}}}}+e^{{-\beta E_{{\sigma}}}}}{i\omega _{{n}}+E_{{0}}-E_{{\sigma}}}+\frac{e^{{-\beta E_{{\overline{\sigma}}}}}+e^{{-\beta E_{{2}}}}}{i\omega _{{n}}+E_{{\overline{\sigma}}}-E_{{2}}}\},$ at pos:85305(23%) CMML match: 0=apply[divide;apply[plus;apply[ csymbol[superscript];ci[e];apply[minus;apply[times;ci[β];apply[ csymbol[subscript];ci[E];cn[0]]]]];apply[ csymbol[superscript];ci[e];apply[minus;apply[times;ci[β];apply[ csymbol[subscript];ci[E];ci[σ]]]]]];apply[minus;apply[plus;apply[times;ci[i];apply[ csymbol[subscript];ci[ω];ci[n]]];apply[ csymbol[subscript];ci[E];cn[0]]];apply[ csymbol[subscript];ci[E];ci[σ]]]];apply[divide;apply[plus;apply[ csymbol[superscript];ci[e];apply[minus;apply[times;ci[β];apply[ csymbol[subscript];ci[E];apply[ ci[¯];ci[σ]]]]]];apply[ csymbol[superscript];ci[e];apply[minus;apply[times;ci[β];apply[ csymbol[subscript];ci[E];cn[2]]]]]];apply[minus;apply[plus;apply[times;ci[i];apply[ csymbol[subscript];ci[ω];ci[n]]];apply[ csymbol[subscript];ci[E];apply[ ci[¯];ci[σ]]]];apply[ csymbol[subscript];ci[E];cn[2]]]]]]]] 1=apply[minus;apply[times;ci[β];apply[ csymbol[subscript];ci[E];cn[0]]]]];apply[ csymbol[superscript];ci[e];apply[minus;apply[times;ci[β];apply[ csymbol[subscript];ci[E];ci[σ]]]]]];apply[minus;apply[plus;apply[times;ci[i];apply[ csymbol[subscript];ci[ω];ci[n]]];apply[ csymbol[subscript];ci[E];cn[0]]];apply[ csymbol[subscript];ci[E];ci[σ]]]];apply[divide;apply[plus;apply[ csymbol[superscript];ci[e];apply[minus;apply[times;ci[β];apply[ csymbol[subscript];ci[E];apply[ ci[¯];ci[σ]]]]]];apply[ csymbol[superscript];ci[e];apply[minus;apply[times;ci[β];apply[ csymbol[subscript];ci[E];cn[2]]]]]];apply[minus;apply[plus;apply[times;ci[i];apply[ csymbol[subscript];ci[ω];ci[n]]];apply[ csymbol[subscript];ci[E];apply[ ci[¯];ci[σ]]]];apply[ csymbol[subscript 2=ci[E 3=cn[2]]]]]]] PMML match: 0=mfrac[mrow[msup[mi[e];mrow[mo[-];mrow[mi[β];msub[mi[E];mn[0]]]]];mo[+];msup[mi[e];mrow[mo[-];mrow[mi[β];msub[mi[E];mi[σ]]]]]];mrow[mrow[mi[i];msub[mi[ω];mi[n]]];mo[+];msub[mi[E];mn[0]];mo[-];msub[mi[E];mi[σ]]]]];mo[+];mstyle[mfrac[mrow[msup[mi[e];mrow[mo[-];mrow[mi[β];msub[mi[E];mover[mi[σ];mo[¯]]]]]];mo[+];msup[mi[e];mrow[mo[-];mrow[mi[β];msub[mi[E];mn[2]]]]]];mrow[mrow[mi[i];msub[mi[ω];mi[n]]];mo[+];msub[mi[E];mover[mi[σ];mo[¯]]];mo[-];msub[mi[E];mn[2]]]]]];mo[}]]];mo[,]] 1=mrow[mo[-];mrow[mi[β];msub[mi[E];mn[0]]]]];mo[+];msup[mi[e];mrow[mo[-];mrow[mi[β];msub[mi[E];mi[σ]]]]]];mrow[mrow[mi[i];msub[mi[ω];mi[n]]];mo[+];msub[mi[E];mn[0]];mo[-];msub[mi[E];mi[σ]]]]];mo[+];mstyle[mfrac[mrow[msup[mi[e];mrow[mo[-];mrow[mi[β];msub[mi[E];mover[mi[σ];mo[¯]]]]]];mo[+];msup[mi[e];mrow[mo[-];mrow[mi[β];msub[mi[E];mn[2]]]]]];mrow[mrow[mi[i];msub[mi[ω];mi[n]] 2=msub[mi[E];mover[mi[σ];mo[¯]]];mo[-];msub[mi[E];mn[2]]]]]];mo[}]] 3=mo[,] Scoringfunction: ' + TeX_HIT_SCORE + CMML_SCORE * 1.0 + PMML_SCORE * 1.0 + NO_TEXT_SCORE + 1.9375 * TOKEN_SCORE[e] + 1.96875 * TOKEN_SCORE[+] + 1.9999961853027344 * TOKEN_SCORE[\] + 1.9375 * TOKEN_SCORE[^] + 1.875 * TOKEN_SCORE[frac] =+100.0+5000.0*1.0+2000.0*1.0+0.0+1.9375*0.307267883373706+1.96875*0.0160883895861106+1.9999961853027344*5.92879328325965E-4+1.9375*0.00338742677192689+1.875*0.0366287198730455 = 7100.703433286562' final score ~ 7100 reviewer: smiao gave 1
Rendered MathML:
1Z0{e-βE0+e-βEσiωn+E0-Eσ+e-βEσ¯+e-βE2iωn+Eσ¯-E2},1subscriptZ0superscripteβsubscriptE0superscripteβsubscriptEσisubscriptωnsubscriptE0subscriptEσsuperscripteβsubscriptE¯σsuperscripteβsubscriptE2isubscriptωnsubscriptE¯σsubscriptE2\displaystyle\frac{1}{Z_{{0}}}\{\frac{e^{{-\beta E_{{0}}}}+e^{{-\beta E_{{\sigma}}}}}{i\omega _{{n}}+E_{{0}}-E_{{\sigma}}}+\frac{e^{{-\beta E_{{\overline{\sigma}}}}}+e^{{-\beta E_{{2}}}}}{i\omega _{{n}}+E_{{\overline{\sigma}}}-E_{{2}}}\},
End of MathML
.

Hit id56131

  • Reviwer: smiao
  • Reviwer score: 1
  • Formulasearchengine score: 7050
  • Reference to collection: _PREFIX_/217/f086662.xhtml#id56131
found all required tokens ([e x 6, ⁢ x 6, n x 2, + x 2, ., K, - x 3, 2 x 2, ω x 8, 1 x 2, ~ x 2, π x 6, χ x 2, =]) in PMML at pos:41304(2%) CMML match: 0=apply[divide;apply[plus;apply[ csymbol[superscript];ci[e];apply[minus;apply[times;ci[π];ci[ω]]]];apply[ csymbol[superscript];ci[e];apply[minus;apply[times;cn[2];ci[π];ci[χ];ci[ω]]]]];apply[plus;cn[1];apply[ csymbol[superscript];ci[e];apply[minus;apply[times;ci[π];ci[ω]]]]]]] 1=apply[minus;apply[times;ci[π];ci[ω]]]];apply[ csymbol[superscript];ci[e];apply[minus;apply[times;cn[2];ci[π];ci[χ];ci[ω]]]]];apply[plus;cn[1];apply[ csymbol[superscript];ci[e 2=apply[minus;apply[times;ci[π 3=ci[ω]]]]]] PMML match: 0=mfrac[mrow[msup[mi[e];mrow[mo[-];mrow[mi[π];mi[ω]]]];mo[+];msup[mi[e];mrow[mo[-];mrow[mn[2];mi[π];mi[χ];mi[ω]]]]];mrow[mn[1];mo[+];msup[mi[e];mrow[mo[-];mrow[mi[π];mi[ω]]]]]]];mo[.]] 1=mrow[mo[-];mrow[mi[π];mi[ω]]]];mo[+];msup[mi[e];mrow[mo[-];mrow[mn[2];mi[π];mi[χ];mi[ω]]]]];mrow[mn[1 2=msup[mi[e];mrow[mo[-];mrow[mi[π];mi[ω]]]]]] 3=mo[.] Scoringfunction: ' + PMML_HIT_SCORE + CMML_SCORE * 1.0 + PMML_SCORE * 1.0 + NO_TEXT_SCORE + 1.984375 * TOKEN_SCORE[e] + 1.75 * TOKEN_SCORE[+] =+50.0+5000.0*1.0+2000.0*1.0+0.0+1.984375*0.307267883373706+1.75*0.0160883895861106 = 7050.6378893878455' final score ~ 7050 reviewer: smiao gave 1
Rendered MathML:
K~nω=e-πω+e-2πχω1+e-πω.subscript~Knωsuperscripteπωsuperscripte2πχω1superscripteπω
End of MathML
.

Hit id79426

  • Reviwer: smiao
  • Reviwer score: 1
  • Formulasearchengine score: 7050
  • Reference to collection: _PREFIX_/237/f094543.xhtml#id79426
found all required tokens ([e x 6, ⁢ x 11, λ x 6, + x 3, ., / x 2, β x 2, ,, γ x 4, - x 2, i x 6, T x 4, 2 x 6, 1 x 2, P x 4, S x 2, π x 16, = x 2]) in PMML at pos:397641(75%) CMML match: 0=apply[divide;apply[plus;apply[ csymbol[superscript];ci[e];apply[minus;apply[times;ci[i];ci[γ]]]];apply[divide;ci[P];ci[T]]];apply[plus;apply[ csymbol[superscript];ci[e];apply[times;ci[i];ci[γ]]];apply[divide;ci[P];ci[T]]]]]]] 1=apply[minus;apply[times;ci[i];ci[γ]]]];apply[divide;ci[P];ci[T]]];apply[plus;apply[ csymbol[superscript];ci[e];apply[times;ci[i];ci[γ]] 2=apply[divide;ci[P 3=ci[T]]]]]] PMML match: 0=mfrac[mrow[msup[mi[e];mrow[mo[-];mrow[mi[i];mi[γ]]]];mo[+];mrow[mi[P];mo[/];mi[T]]];mrow[msup[mi[e];mrow[mi[i];mi[γ]]];mo[+];mrow[mi[P];mo[/];mi[T]]]]]]];mo[.]] 1=mrow[mo[-];mrow[mi[i];mi[γ]]]];mo[+];mrow[mi[P];mo[/];mi[T]]];mrow[msup[mi[e];mrow[mi[i];mi[γ]] 2=mrow[mi[P];mo[/];mi[T]]]]]] 3=mo[.] Scoringfunction: ' + PMML_HIT_SCORE + CMML_SCORE * 1.0 + PMML_SCORE * 1.0 + NO_TEXT_SCORE + 1.984375 * TOKEN_SCORE[e] + 1.875 * TOKEN_SCORE[+] =+50.0+5000.0*1.0+2000.0*1.0+0.0+1.984375*0.307267883373706+1.875*0.0160883895861106 = 7050.639900436543' final score ~ 7050 reviewer: smiao gave 1
Rendered MathML:
Sππ=2Imλππ1+λππ2,λππ=e-2iβe-iγ+P/Teiγ+P/T.subscriptSππ2Imsubscriptλππ1superscriptsubscriptλππ2subscriptλππsuperscripte2iβsuperscripteiγPTsuperscripteiγPT
End of MathML
.

Hit id82916

  • Reviwer: smiao
  • Reviwer score: 1
  • Formulasearchengine score: 7050
  • Reference to collection: _PREFIX_/122/f048502.xhtml#id82916
found all required tokens ([2 x 4, 1 x 6, u x 10, e x 8, + x 2, ., =, - x 5]) in PMML at pos:441466(86%) CMML match: 0=apply[divide;apply[plus;apply[ csymbol[superscript];ci[e];apply[minus;apply[ csymbol[subscript];ci[u];cn[1]]]];apply[ csymbol[superscript];ci[e];apply[minus;apply[ csymbol[subscript];ci[u];cn[2]]]]];apply[plus;cn[1];apply[ csymbol[superscript];ci[e];apply[minus;apply[minus;apply[ csymbol[subscript];ci[u];cn[1]]];apply[ csymbol[subscript];ci[u];cn[2]]]]]]] 1=apply[minus;apply[ csymbol[subscript];ci[u];cn[1]]]];apply[ csymbol[superscript];ci[e];apply[minus;apply[ csymbol[subscript];ci[u];cn[2]]]]];apply[plus;cn[1];apply[ csymbol[superscript];ci[e];apply[minus;apply[minus;apply[ csymbol[subscript];ci[u];cn[1]]];apply[ csymbol[subscript 2=ci[u 3=cn[2]]]]]] PMML match: 0=mfrac[mrow[msup[mi[e];mrow[mo[-];msub[mi[u];mn[1]]]];mo[+];msup[mi[e];mrow[mo[-];msub[mi[u];mn[2]]]]];mrow[mn[1];mo[+];msup[mi[e];mrow[mo[-];msub[mi[u];mn[1]];mo[-];msub[mi[u];mn[2]]]]]]];mo[.]] 1=mrow[mo[-];msub[mi[u];mn[1]]]];mo[+];msup[mi[e];mrow[mo[-];msub[mi[u];mn[2]]]]];mrow[mn[1 2=msup[mi[e];mrow[mo[-];msub[mi[u];mn[1]];mo[-];msub[mi[u];mn[2]]]]]] 3=mo[.] Scoringfunction: ' + PMML_HIT_SCORE + CMML_SCORE * 1.0 + PMML_SCORE * 1.0 + NO_TEXT_SCORE + 1.99609375 * TOKEN_SCORE[e] + 1.75 * TOKEN_SCORE[+] =+50.0+5000.0*1.0+2000.0*1.0+0.0+1.99609375*0.307267883373706+1.75*0.0160883895861106 = 7050.641490183354' final score ~ 7050 reviewer: smiao gave 1
Rendered MathML:
e-u=e-u1+e-u21+e-u1-u2.superscripteusuperscriptesubscriptu1superscriptesubscriptu21superscriptesubscriptu1subscriptu2
End of MathML
.

Hit idp26685856

  • Reviwer: smiao
  • Reviwer score: 1
  • Formulasearchengine score: 7000
  • Reference to collection: _PREFIX_/113/f044971.xhtml#idp26685856
no match at pos:891474(000072%) VariableMap:[e x 4, * x 2, +, ., ,, i, - x 5, 3, qquad, 2 x 2, over x 2, 0, V x 2, displaystyle, ; x 2, \ x 6, _ x 2, ^ x 6, z x 4, = x 2] Expects 1 occurences for 'frac' but has only 0 CMML match: 0=apply[divide;apply[plus;apply[ csymbol[superscript];ci[e];apply[minus;apply[ csymbol[superscript];ci[z];times]]];apply[ csymbol[superscript];ci[e];apply[minus;ci[z]]]];cn[2]]]]] 1=apply[minus;apply[ csymbol[superscript];ci[z];times]]];apply[ csymbol[superscript];ci[e 2=apply[minus;ci[z]]] 3=cn[2]]]] PMML match: 0=mfrac[mrow[msup[mi[e];mrow[mo[-];msup[mi[z];mo[*]]]];mo[-];msup[mi[e];mrow[mo[-];mi[z]]]];mrow[mn[2];mi[i]]]]]];mo[,];mrow[msub[mi[V];mn[0]];mo[=];mpadded[mstyle[mfrac[mrow[msup[mi[e];mrow[mo[-];msup[mi[z];mo[*]]]];mo[+];msup[mi[e];mrow[mo[-];mi[z]]]];mn[2]]]]]];mo[.]] 1=mrow[mo[-];msup[mi[z];mo[*]]]];mo[-];msup[mi[e];mrow[mo[-];mi[z]]]];mrow[mn[2];mi[i]]]]]];mo[,];mrow[msub[mi[V];mn[0]];mo[=];mpadded[mstyle[mfrac[mrow[msup[mi[e];mrow[mo[-];msup[mi[z];mo[*]]] 2=msup[mi[e];mrow[mo[-];mi[z]]]];mn[2]]]]] 3=mo[.] Scoringfunction: ' + NO_SCORE + CMML_SCORE * 1.0 + PMML_SCORE * 1.0 =+0.0+5000.0*1.0+2000.0*1.0 = 7000.0' final score ~ 7000 reviewer: smiao gave 1
Rendered MathML:
V3=e-z*-e-z2i,V0=e-z*+e-z2.subscriptV3superscriptesuperscriptzsuperscriptez2isubscriptV0superscriptesuperscriptzsuperscriptez2\displaystyle V_{{3}}={e^{{-z^{{*}}}}-e^{{-z}}\over 2i}\;,\qquad V_{{0}}={e^{{-z^{{*}}}}+e^{{-z}}\over 2}\;.
End of MathML
.

Hit id74482

  • Reviwer: smiao
  • Reviwer score: 1
  • Formulasearchengine score: 5050
  • Reference to collection: _PREFIX_/106/f042252.xhtml#id74482
found all required tokens ([g x 2, d x 4, e x 4, b x 4, ⁢ x 7, λ x 8, L x 4, + x 3, /, - x 2, i x 4, 2 x 6, S x 4, =, τ x 8]) in PMML at pos:327842(74%) CMML match: 0=apply[divide;apply[plus;apply[ csymbol[superscript];ci[e];apply[minus;apply[times;ci[i];apply[plus;apply[times;apply[ csymbol[subscript];ci[λ];ci[L]];apply[ csymbol[subscript];ci[τ];ci[d]]];apply[times;apply[ csymbol[subscript];ci[λ];ci[S]];apply[ csymbol[subscript];ci[τ];ci[b]]]]]]];apply[ csymbol[superscript];ci[e];apply[minus;apply[times;ci[i];apply[plus;apply[times;apply[ csymbol[subscript];ci[λ];ci[S]];apply[ csymbol[subscript];ci[τ];ci[d]]];apply[times;apply[ csymbol[subscript];ci[λ];ci[L]];apply[ csymbol[subscript];ci[τ];ci[b]]]]]]]];cn[2]];apply[ ci;cn[2]]]] 1=apply[minus;apply[times;ci[i];apply[plus;apply[times;apply[ csymbol[subscript];ci[λ];ci[L]];apply[ csymbol[subscript];ci[τ];ci[d]]];apply[times;apply[ csymbol[subscript];ci[λ];ci[S]];apply[ csymbol[subscript];ci[τ];ci[b]]]]]]];apply[ csymbol[superscript];ci[e];apply[minus;apply[times;ci[i];apply[plus;apply[times;apply[ csymbol[subscript];ci[λ];ci[S]];apply[ csymbol[subscript];ci[τ];ci[d]]];apply[times;apply[ csymbol[subscript];ci[λ];ci[L]];apply[ csymbol[subscript];ci[τ];ci[b]]]]]]] 2=cn[2] 3=apply[ ci;cn[2]]] Scoringfunction: ' + PMML_HIT_SCORE + CMML_SCORE * 1.0 + NO_TEXT_SCORE + 1.9375 * TOKEN_SCORE[e] + 1.875 * TOKEN_SCORE[+] =+50.0+5000.0*1.0+0.0+1.9375*0.307267883373706+1.875*0.0160883895861106 = 5050.62549725451' final score ~ 5050 reviewer: smiao gave 1
Rendered MathML:
g2=e-iλLτd+λSτb+e-iλSτd+λLτb/22subscriptg2superscripteisubscriptλLsubscriptτdsubscriptλSsubscriptτbsuperscripteisubscriptλSsubscriptτdsubscriptλLsubscriptτb22
End of MathML
.

Hit id71995

  • Reviwer: smiao
  • Reviwer score: 1
  • Formulasearchengine score: 2100
  • Reference to collection: _PREFIX_/38/f014855.xhtml#id71995
found all required tokens in TeX $\displaystyle{\frac{e^{{i\xi u}}e^{{u}}}{(e^{u}+1)(e^{u}+\alpha)}}$ at pos:271769(45%) PMML match: 0=mfrac[mrow[msup[mi[e];mrow[mi[i];mi[ξ];mi[u]]];msup[mi[e];mi[u]]];mrow[mfenced[mrow[msup[mi[e];mi[u]];mo[+];mn[1]]];mfenced[mrow[msup[mi[e];mi[u]];mo[+];mi[α]]]]]] 1=mrow[mi[i];mi[ξ];mi[u]]];msup[mi[e];mi[u]]];mrow[mfenced[mrow[msup[mi[e];mi[u] 2=mn[1]]];mfenced[mrow[msup[mi[e];mi[u]];mo[+ 3=mi[α]]]]] Scoringfunction: ' + TeX_HIT_SCORE + PMML_SCORE * 1.0 + NO_TEXT_SCORE + 1.9375 * TOKEN_SCORE[e] + 1.75 * TOKEN_SCORE[+] + 1.9375 * TOKEN_SCORE[\] + 1.9375 * TOKEN_SCORE[^] + 1.5 * TOKEN_SCORE[frac] =+100.0+2000.0*1.0+0.0+1.9375*0.307267883373706+1.75*0.0160883895861106+1.9375*5.92879328325965E-4+1.9375*0.00338742677192689+1.5*0.0366287198730455 = 2100.686141128691' final score ~ 2100 reviewer: smiao gave 1
Rendered MathML:
eiξueueu+1eu+αsuperscripteiξusuperscripteusuperscripteu1superscripteuα\displaystyle{\frac{e^{{i\xi u}}e^{{u}}}{(e^{u}+1)(e^{u}+\alpha)}}
End of MathML
.

Hit id76993

  • Reviwer: smiao
  • Reviwer score: 1
  • Formulasearchengine score: 2050
  • Reference to collection: _PREFIX_/233/f092933.xhtml#id76993
found all required tokens ([G x 2, e x 2, ⁢ x 13, C x 2, ∏ x 4, M x 8, + x 4, N x 6, m x 8, ., w x 6, 2 x 30, 1 x 4, W x 8, Q x 12, Y x 4, z x 6, = x 3, Z x 8]) in PMML at pos:351894(45%) PMML match: 0=mfrac[mrow[msup[mi[e];mn[2]];msubsup[mi[M];mi[Z];mn[2]];mfenced[mrow[msup[mi[Q];mn[2]];mo[+];msubsup[mi[M];mi[W];mn[2]]]]];mrow[msup[mi[Q];mn[2]];msubsup[mi[M];mi[W];mn[2]];mfenced[mrow[msup[mi[Q];mn[2]];mo[+];msubsup[mi[M];mi[Z];mn[2]]]]]];mfenced[mrow[mover[munder[mo[∏];mrow[mi[w];mo[=];mn[1]]];mi[N]];mfrac[mrow[msup[mi[Q];mn[2]];mo[+];msubsup[mi[m];mrow[mi[W];mi[w]];mn[2]]];msubsup[mi[m];mrow[mi[W];mi[w]];mn[2]]]]];mfenced[mrow[mover[munder[mo[∏];mrow[mi[z];mo[=];mn[1]]];mi[N]];mfrac[msubsup[mi[m];mrow[mi[Z];mi[z]];mn[2]];mrow[msup[mi[Q];mn[2]];mo[+];msubsup[mi[m];mrow[mi[Z];mi[z]];mn[2]]]]]]]];mo[.]] 1=mn[2]];msubsup[mi[M];mi[Z];mn[2]];mfenced[mrow[msup[mi[Q];mn[2]];mo[+];msubsup[mi[M];mi[W];mn[2]]]]];mrow[msup[mi[Q];mn[2]];msubsup[mi[M];mi[W];mn[2]];mfenced[mrow[msup[mi[Q];mn[2]];mo[+];msubsup[mi[M];mi[Z];mn[2]]]]]];mfenced[mrow[mover[munder[mo[∏];mrow[mi[w];mo[=];mn[1]]];mi[N]];mfrac[mrow[msup[mi[Q];mn[2]];mo[+];msubsup[mi[m];mrow[mi[W];mi[w]];mn[2]]];msubsup[mi[m];mrow[mi[W];mi[w]];mn[2]]]]];mfenced[mrow[mover[munder[mo[∏];mrow[mi[z];mo[=];mn[1]]];mi[N]];mfrac[msubsup[mi[m];mrow[mi[Z];mi[z]];mn[2]];mrow[msup[mi[Q];mn[2] 2=msubsup[mi[m];mrow[mi[Z];mi[z]];mn[2]]]]]]] 3=mo[.] Scoringfunction: ' + PMML_HIT_SCORE + PMML_SCORE * 1.0 + NO_TEXT_SCORE + 1.75 * TOKEN_SCORE[e] + 1.9375 * TOKEN_SCORE[+] =+50.0+2000.0*1.0+0.0+1.75*0.307267883373706+1.9375*0.0160883895861106 = 2050.568890050727' final score ~ 2050 reviewer: smiao gave 1
Rendered MathML:
GNCQ2YY=e2MZ2Q2+MW2Q2MW2Q2+MZ2w=1NQ2+mWw2mWw2z=1NmZz2Q2+mZz2.subscriptsubscriptGNCsuperscriptQ2YYsuperscripte2subscriptsuperscriptM2ZsuperscriptQ2subscriptsuperscriptM2WsuperscriptQ2subscriptsuperscriptM2WsuperscriptQ2subscriptsuperscriptM2Zsuperscriptsubscriptw1NsuperscriptQ2subscriptsuperscriptm2Wwsubscriptsuperscriptm2Wwsuperscriptsubscriptz1Nsubscriptsuperscriptm2ZzsuperscriptQ2subscriptsuperscriptm2Zz
End of MathML
.

Hit id142388

  • Reviwer: smiao
  • Reviwer score: 1
  • Formulasearchengine score: 100
  • Reference to collection: _PREFIX_/5/f001756.xhtml#id142388
found all required tokens in TeX $\gamma^{{-1}}e^{{\frac{(n+1)^{2}}{4\gamma^{2}}}}\int _{{-\infty}}^{\infty}e^{{-y^{2}}}\sin(2\pi\gamma y+\pi(n+1))\, dy=0,$ at pos:1379181(49%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_SCORE + 1.75 * TOKEN_SCORE[e] + 1.875 * TOKEN_SCORE[+] + 1.99951171875 * TOKEN_SCORE[\] + 1.9921875 * TOKEN_SCORE[^] + 1.5 * TOKEN_SCORE[frac] =+100.0+0.0+1.75*0.307267883373706+1.875*0.0160883895861106+1.99951171875*5.92879328325965E-4+1.9921875*0.00338742677192689+1.5*0.0366287198730455 = 100.6307614646245' final score ~ 100 reviewer: smiao gave 1
Rendered MathML:
γ-1en+124γ2-e-y2sin2πγy+πn+1dy=0,superscriptγ1superscriptesuperscriptn124superscriptγ2superscriptsubscriptsuperscriptesuperscripty22πγyπn1dy0\gamma^{{-1}}e^{{\frac{(n+1)^{2}}{4\gamma^{2}}}}\int _{{-\infty}}^{\infty}e^{{-y^{2}}}\sin(2\pi\gamma y+\pi(n+1))\, dy=0,
End of MathML
.

Hit idp1960608

  • Reviwer: smiao
  • Reviwer score: 1
  • Formulasearchengine score: 100
  • Reference to collection: _PREFIX_/133/f052802.xhtml#idp1960608
found all required tokens in TeX $\displaystyle\int dt\left[\frac{1}{4}e^{u}{\dot{u}}{}^{2}+\frac{e^{u}}{e^{u}+y}({\dot{q}}_{2}\cdot{\dot{q}}_{2})+\frac{1}{e^{u}+y}(q_{2}\cdot{\dot{q}}_{2})^{2}+\frac{1}{128(e^{u}+y)}(H\cdot H)+\frac{{\rm i}}{4(e^{u}+y)}(V\cdot H)\right.$ at pos:235207(38%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_SCORE + 1.984375 * TOKEN_SCORE[e] + 1.99609375 * TOKEN_SCORE[+] + 1.9999961853027344 * TOKEN_SCORE[\] + 1.99609375 * TOKEN_SCORE[^] + 1.96875 * TOKEN_SCORE[frac] =+100.0+0.0+1.984375*0.307267883373706+1.99609375*0.0160883895861106+1.9999961853027344*5.92879328325965E-4+1.99609375*0.00338742677192689+1.96875*0.0366287198730455 = 100.7219088100232' final score ~ 100 reviewer: smiao gave 1
Rendered MathML:
dt[14euu˙+2eueu+y(q˙2q˙2)+1eu+y(q2q˙2)2+1128(eu+y)(HH)+i4(eu+y)(VH)dt[14superscripteu˙usuperscript2superscripteusuperscripteuy(subscript˙q2subscript˙q2)1superscripteuysuperscript(subscriptq2subscript˙q2)21128superscripteuy(HH)i4superscripteuy(VH)\displaystyle\int dt\left[\frac{1}{4}e^{u}{\dot{u}}{}^{2}+\frac{e^{u}}{e^{u}+y}({\dot{q}}_{2}\cdot{\dot{q}}_{2})+\frac{1}{e^{u}+y}(q_{2}\cdot{\dot{q}}_{2})^{2}+\frac{1}{128(e^{u}+y)}(H\cdot H)+\frac{{\rm i}}{4(e^{u}+y)}(V\cdot H)\right.
End of MathML
.

Hit idp34728848

  • Reviwer: smiao
  • Reviwer score: 1
  • Formulasearchengine score: 100
  • Reference to collection: _PREFIX_/18/f006899.xhtml#idp34728848
found all required tokens in TeX $\displaystyle=\frac{2^{{k+1}}}{(2k+1)!}\int _{{-\infty}}^{{\infty}}e^{{-u^{{2}}}}\mathcal{H}_{{2j}}(u)\mathcal{H}_{{2k}}(u/\sqrt{2})du$ at pos:1928311(97%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_SCORE + 1.5 * TOKEN_SCORE[e] + 1.75 * TOKEN_SCORE[+] + 1.99609375 * TOKEN_SCORE[\] + 1.9375 * TOKEN_SCORE[^] + 1.5 * TOKEN_SCORE[frac] =+100.0+0.0+1.5*0.307267883373706+1.75*0.0160883895861106+1.99609375*5.92879328325965E-4+1.9375*0.00338742677192689+1.5*0.0366287198730455 = 100.5517461687382' final score ~ 100 reviewer: smiao gave 1
Rendered MathML:
=2k+1(2k+1)!-e-u2H2j(u)H2k(u/2)duabsentsuperscript2k12k1superscriptsubscriptsuperscriptesuperscriptu2subscriptH2jusubscriptH2ku2du\displaystyle=\frac{2^{{k+1}}}{(2k+1)!}\int _{{-\infty}}^{{\infty}}e^{{-u^{{2}}}}\mathcal{H}_{{2j}}(u)\mathcal{H}_{{2k}}(u/\sqrt{2})du
End of MathML
.

Hit id101872

  • Reviwer: smiao
  • Reviwer score: 1
  • Formulasearchengine score: 50
  • Reference to collection: _PREFIX_/105/f041996.xhtml#id101872
found all required tokens ([E x 4, e x 2, ⁡, ⁢ x 5, +, Δ x 6, → x 2, , x 2, -, exp, 2 x 2, 1 x 2, t x 4, P x 2, ∼ x 2, ∞]) in PMML at pos:726171(48%) Scoringfunction: ' + PMML_HIT_SCORE + NO_TEXT_SCORE + 1.75 * TOKEN_SCORE[e] + 1.5 * TOKEN_SCORE[+] =+50.0+0.0+1.75*0.307267883373706+1.5*0.0160883895861106 = 50.56185138028315' final score ~ 50 reviewer: smiao gave 1
Rendered MathML:
PΔeΔE,tt+12exp-ΔE,superscripttsubscriptPΔeΔEt12ΔE
End of MathML
.

Hit id102216

  • Reviwer: smiao
  • Reviwer score: 1
  • Formulasearchengine score: 50
  • Reference to collection: _PREFIX_/235/f093853.xhtml#id102216
found all required tokens ([e x 4, ψ x 4, b x 4, P x 4, q x 6, ⁢ x 6, + x 3, ∼ x 4, ∞ x 2, → x 4, , x 2, - x 5]) in PMML at pos:733590(87%) Scoringfunction: ' + PMML_HIT_SCORE + NO_TEXT_SCORE + 1.9375 * TOKEN_SCORE[e] + 1.875 * TOKEN_SCORE[+] =+50.0+0.0+1.9375*0.307267883373706+1.875*0.0160883895861106 = 50.62549725451051' final score ~ 50 reviewer: smiao gave 1
Rendered MathML:
ψq-b-e-P-q,ψq+b+e-P+q,subscriptψsuperscriptqsubscriptbsuperscriptesubscriptPqsubscriptψsuperscriptqsubscriptbsuperscriptesubscriptPq
End of MathML
.

Hit id187877

  • Reviwer: smiao
  • Reviwer score: 1
  • Formulasearchengine score: 50
  • Reference to collection: _PREFIX_/123/f048847.xhtml#id187877
found all required tokens ([d x 12, e x 8, cos x 5, ⁡ x 10, ⁢ x 37, n x 24, M x 12, + x 7, , x 7, i x 10, ∫ x 4, - x 17, ω x 38, 1 x 24, 0 x 11, sin x 5, π x 8, y x 2, = x 2, x x 14]) in PMML at pos:2039761(78%) Scoringfunction: ' + PMML_HIT_SCORE + NO_TEXT_SCORE + 1.99609375 * TOKEN_SCORE[e] + 1.9921875 * TOKEN_SCORE[+] =+50.0+0.0+1.99609375*0.307267883373706+1.9921875*0.0160883895861106 = 50.64538659020656' final score ~ 50 reviewer: smiao gave 1
Rendered MathML:
0πMx+n-1cosω,n-1sinωie-iωdω=-0πMx+n-1cosω,n-1sinωddωe-iωdω=Mx-n-1,0+Mx+n-1,0+1n0πMyx+n-1cosω,n-1sinωcosωe-iωdω-1n0πMxx+n-1cosω,n-1sinωsinωe-iωdω,superscriptsubscript0πMxsuperscriptn1ωsuperscriptn1ωisuperscripteiωdωsuperscriptsubscript0πMxsuperscriptn1ωsuperscriptn1ωddωsuperscripteiωdωMxsuperscriptn10Mxsuperscriptn101nsuperscriptsubscript0πsubscriptMyxsuperscriptn1ωsuperscriptn1ωωsuperscripteiωdω1nsuperscriptsubscript0πsubscriptMxxsuperscriptn1ωsuperscriptn1ωωsuperscripteiωdω
End of MathML
.

Hit id194302

  • Reviwer: smiao
  • Reviwer score: 1
  • Formulasearchengine score: 50
  • Reference to collection: _PREFIX_/123/f048847.xhtml#id194302
found all required tokens ([g x 2, d x 2, Re x 2, e x 2, ⁡ x 2, cos, ⁢ x 11, n x 6, M x 2, + x 3, O x 2, ,, ∫, - x 2, ω x 6, 1 x 7, 0 x 2, sin, π x 4, =, x x 6]) in PMML at pos:2138170(81%) Scoringfunction: ' + PMML_HIT_SCORE + NO_TEXT_SCORE + 1.75 * TOKEN_SCORE[e] + 1.875 * TOKEN_SCORE[+] =+50.0+0.0+1.75*0.307267883373706+1.875*0.0160883895861106 = 50.567884526377945' final score ~ 50 reviewer: smiao gave 1
Rendered MathML:
=1πRe0πM1xx+n-1cosω,n-1sinωdω+Oeng+x1πResuperscriptsubscript0πsubscriptM1xxsuperscriptn1ωsuperscriptn1ωdωOsuperscriptensubscriptgx
End of MathML
.

Hit id58173

  • Reviwer: smiao
  • Reviwer score: 1
  • Formulasearchengine score: 50
  • Reference to collection: _PREFIX_/87/f034459.xhtml#id58173
found all required tokens ([e x 6, ⟶ x 4, c x 2, ⁢ x 12, a x 2, *, + x 2, → x 4, k x 18, β x 2, , x 2, - x 2, i x 6, 2, ω x 8, t x 14, ∞ x 2, φ x 4]) in PMML at pos:70356(20%) Scoringfunction: ' + PMML_HIT_SCORE + NO_TEXT_SCORE + 1.984375 * TOKEN_SCORE[e] + 1.75 * TOKEN_SCORE[+] =+50.0+0.0+1.984375*0.307267883373706+1.75*0.0160883895861106 = 50.63788938784539' final score ~ 50 reviewer: smiao gave 1
Rendered MathML:
φktt-akeiωkt,φktt+βk*2ωkeiωkt+cke-iωkt,superscripttsubscriptφktsubscriptaksuperscripteisubscriptωktsuperscripttsubscriptφktsuperscriptsubscriptβk2subscriptωksuperscripteisubscriptωktsubscriptcksuperscripteisubscriptωkt
End of MathML
.

Hit id61792

  • Reviwer: smiao
  • Reviwer score: 1
  • Formulasearchengine score: 50
  • Reference to collection: _PREFIX_/178/f070808.xhtml#id61792
found all required tokens ([μ x 2, ℓ x 6, e, ⁢ x 7, C x 4, L x 12, ∏ x 2, + x 4, M x 4, → x 8, N x 8, η x 7, j x 8, /, ,, ∈ x 2, γ x 2, - x 6, 1 x 12, ∑, q x 8, = x 2, Z x 2]) in PMML at pos:121426(47%) Scoringfunction: ' + PMML_HIT_SCORE + NO_TEXT_SCORE + 1.5 * TOKEN_SCORE[e] + 1.9375 * TOKEN_SCORE[+] =+50.0+0.0+1.5*0.307267883373706+1.9375*0.0160883895861106 = 50.492073079883646' final score ~ 50 reviewer: smiao gave 1
Rendered MathML:
γLN=qLL+/NqM-Lq+1M+LLN-C-1η1ZqηC-1η-ej=1N-1μj+ηjηj,superscriptsubscriptγLNsuperscriptqLLNsubscriptqMLsubscriptsuperscriptq1MLsubscriptLNsubscriptsuperscriptC1η1ZsuperscriptqηsuperscriptC1ηsubscriptesuperscriptsubscriptj1N1subscriptμjsubscriptηjsubscriptηj
End of MathML
.

Hit id67293

  • Reviwer: smiao
  • Reviwer score: 1
  • Formulasearchengine score: 50
  • Reference to collection: _PREFIX_/145/f057798.xhtml#id67293
found all required tokens ([μ x 2, e x 2, ⁢ x 7, λ x 2, C x 2, a x 4, L x 10, ∏ x 2, M x 4, + x 2, N x 8, η x 10, j x 8, / x 2, ∈ x 2, γ x 2, - x 5, 2 x 2, 1 x 8, ∑, q x 8, σ x 2, = x 2, Z x 2]) in PMML at pos:205914(19%) Scoringfunction: ' + PMML_HIT_SCORE + NO_TEXT_SCORE + 1.75 * TOKEN_SCORE[e] + 1.75 * TOKEN_SCORE[+] =+50.0+0.0+1.75*0.307267883373706+1.75*0.0160883895861106 = 50.56587347767968' final score ~ 50 reviewer: smiao gave 1
Rendered MathML:
γL=aL/NqL2/NqM-LaqM+LηZN-1σqηC-1η-eλj=1N-1μj+ηjηjsubscriptγLsuperscriptaLNsuperscriptqsuperscriptL2NsubscriptqMLsubscriptaqMLsuperscriptsubscriptηsuperscriptZN1σsuperscriptqηsuperscriptC1ηsubscripteλsuperscriptsubscriptj1N1subscriptμjsubscriptηjsubscriptηj
End of MathML
.

Hit id72049

  • Reviwer: smiao
  • Reviwer score: 1
  • Formulasearchengine score: 50
  • Reference to collection: _PREFIX_/145/f057798.xhtml#id72049
found all required tokens ([μ x 2, ℓ x 2, e x 4, ⁢ x 9, λ x 2, C x 4, L x 4, ∏ x 2, + x 3, N x 4, η x 10, j x 8, /, k x 2, , x 2, ∈ x 2, i x 8, - x 6, 2 x 2, 1 x 14, ′ x 2, ∑, q x 6, σ x 2, =, Z x 2]) in PMML at pos:277765(26%) Scoringfunction: ' + PMML_HIT_SCORE + NO_TEXT_SCORE + 1.9375 * TOKEN_SCORE[e] + 1.875 * TOKEN_SCORE[+] =+50.0+0.0+1.9375*0.307267883373706+1.875*0.0160883895861106 = 50.62549725451051' final score ~ 50 reviewer: smiao gave 1
Rendered MathML:
η,iZN-1σ,Lq-iC-1i+2L+e1ki1/qqηC-1η-eλj=1N-1ηj+μjηjsuperscriptsubscriptηisuperscriptZN1σLsuperscriptqisuperscriptC1i2Lsubscripte1subscriptki1qsuperscriptqηsuperscriptC1ηsubscripteλsuperscriptsubscriptj1N1superscriptsubscriptηjsubscriptμjsubscriptηj
End of MathML
.

Hit id72442

  • Reviwer: smiao
  • Reviwer score: 1
  • Formulasearchengine score: 50
  • Reference to collection: _PREFIX_/45/f017970.xhtml#id72442
found all required tokens ([2 x 6, 1 x 8, e x 2, A x 12, ⋯ x 4, ⁢ x 3, n x 8, + x 5, , x 3, = x 2, i x 8]) in PMML at pos:301108(25%) Scoringfunction: ' + PMML_HIT_SCORE + NO_TEXT_SCORE + 1.75 * TOKEN_SCORE[e] + 1.96875 * TOKEN_SCORE[+] =+50.0+0.0+1.75*0.307267883373706+1.96875*0.0160883895861106 = 50.56939281290164' final score ~ 50 reviewer: smiao gave 1
Rendered MathML:
A2=A1+Aei2i2,,An+1=An+Ain+1in+1,subscriptA2subscriptA1Asubscriptesubscripti2subscripti2subscriptAn1subscriptAnsubscriptAsubscriptin1subscriptin1
End of MathML
.

Hit id78980

  • Reviwer: smiao
  • Reviwer score: 1
  • Formulasearchengine score: 50
  • Reference to collection: _PREFIX_/41/f016215.xhtml#id78980
found all required tokens ([e x 4, ∂ x 2, ⁢ x 5, κ x 2, λ x 4, + x 6, → x 2, - x 6, 2 x 4, 1 x 2, ψ x 4, ∞, y x 6]) in PMML at pos:387996(82%) Scoringfunction: ' + PMML_HIT_SCORE + NO_TEXT_SCORE + 1.9375 * TOKEN_SCORE[e] + 1.984375 * TOKEN_SCORE[+] =+50.0+0.0+1.9375*0.307267883373706+1.984375*0.0160883895861106 = 50.62725692212149' final score ~ 50 reviewer: smiao gave 1
Rendered MathML:
λ+--+κ2ψ+eλy+-y-e-2ψ-1y++λsubscriptsubscriptsubscriptκ2ψsuperscripteλsubscriptysubscriptysuperscripte2ψ1superscripty
End of MathML
.

Hit id95200

  • Reviwer: smiao
  • Reviwer score: 1
  • Formulasearchengine score: 50
  • Reference to collection: _PREFIX_/235/f093853.xhtml#id95200
found all required tokens ([d x 4, e x 4, A x 2, B x 2, ⁢ x 8, κ x 8, + x 3, → x 4, ., ,, - x 4, ∫ x 2, ψ x 4, q x 10, ∞ x 2, ∼ x 4, x x 4]) in PMML at pos:622899(74%) Scoringfunction: ' + PMML_HIT_SCORE + NO_TEXT_SCORE + 1.9375 * TOKEN_SCORE[e] + 1.875 * TOKEN_SCORE[+] =+50.0+0.0+1.9375*0.307267883373706+1.875*0.0160883895861106 = 50.62549725451051' final score ~ 50 reviewer: smiao gave 1
Rendered MathML:
ψA-κq-e-q-qdxκ,ψB+κq+eq+qdxκ.ψsubscriptsubscriptAκsuperscriptqsuperscriptesubscriptsuperscriptqsubscriptqdxκψsubscriptsubscriptBκsuperscriptqsuperscriptesubscriptsuperscriptqsubscriptqdxκ
End of MathML
.

Hit id97124

  • Reviwer: smiao
  • Reviwer score: 1
  • Formulasearchengine score: 50
  • Reference to collection: _PREFIX_/20/f007830.xhtml#id97124
found all required tokens ([d x 8, e x 2, ∂ x 2, ⁡ x 2, ⁢ x 15, +, ϵ x 2, β x 2, , x 4, ∫ x 4, - x 4, w x 2, t x 4, 0 x 4, P x 4, ∞ x 6, y x 12, =, x x 10]) in PMML at pos:673161(81%) Scoringfunction: ' + PMML_HIT_SCORE + NO_TEXT_SCORE + 1.75 * TOKEN_SCORE[e] + 1.5 * TOKEN_SCORE[+] =+50.0+0.0+1.75*0.307267883373706+1.5*0.0160883895861106 = 50.56185138028315' final score ~ 50 reviewer: smiao gave 1
Rendered MathML:
wϵ,tt=-0dx-dyyPx,y+0dxe-βx-dyyPx,y,wϵttsuperscriptsubscript0dxsuperscriptsubscriptdyyPxysuperscriptsubscript0dxsuperscripteβxsuperscriptsubscriptdyyPxy
End of MathML
.

Hit id98739

  • Reviwer: smiao
  • Reviwer score: 1
  • Formulasearchengine score: 50
  • Reference to collection: _PREFIX_/235/f093853.xhtml#id98739
found all required tokens ([d x 4, e x 4, A x 2, B x 2, ⁢ x 8, κ x 8, + x 3, → x 4, , x 2, - x 4, ∫ x 2, ψ x 4, q x 10, ∞ x 2, ∼ x 4, x x 4]) in PMML at pos:680272(81%) Scoringfunction: ' + PMML_HIT_SCORE + NO_TEXT_SCORE + 1.9375 * TOKEN_SCORE[e] + 1.875 * TOKEN_SCORE[+] =+50.0+0.0+1.9375*0.307267883373706+1.875*0.0160883895861106 = 50.62549725451051' final score ~ 50 reviewer: smiao gave 1
Rendered MathML:
ψA-κq-eq-qdxκ,ψB+κq+e-q+qdxκ,ψsubscriptsubscriptAκsuperscriptqsuperscriptesubscriptsuperscriptqsubscriptqdxκψsubscriptsubscriptBκsuperscriptqsuperscriptesubscriptsuperscriptqsubscriptqdxκ
End of MathML
.

Hit id56674

  • Reviwer: smiao
  • Reviwer score: 1
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/2/f000404.xhtml#id56674
no match at pos:50518(000006%) VariableMap:[2, e, sqrt, ~, +, \, ^, i] Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: smiao gave 1
Rendered MathML:
e2+isuperscripte2i\sqrt{e^{2}+i~}
End of MathML
.

Detailed results for reviewer score 0

Hit idp3488464

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 9100
  • Reference to collection: _PREFIX_/61/f024377.xhtml#idp3488464
found all required tokens in TeX $\frac{e^{+}+e^{-}}{2}$ at pos:478791(85%) CMML match: 0=apply[divide;apply[plus;apply[ csymbol[superscript];ci[e];plus];apply[ csymbol[superscript];ci[e];minus]];cn[2]]] 1=plus];apply[ csymbol[superscript];ci[e 2=minus] 3=cn[2]] PMML match: 0=mfrac[mrow[msup[mi[e];mo[+]];mo[+];msup[mi[e];mo[-]]];mn[2]] 1=mo[+] 2=msup[mi[e];mo[-]] 3=mn[2] PMML exact match bonus. Scoringfunction: ' + TeX_HIT_SCORE + CMML_SCORE * 1.0 + PMML_SCORE * 1.0 + PMML_SCORE + NO_TEXT_SCORE + 1.75 * TOKEN_SCORE[e] + 1.75 * TOKEN_SCORE[+] + 1.5 * TOKEN_SCORE[\] + 1.75 * TOKEN_SCORE[^] + 1.5 * TOKEN_SCORE[frac] =+100.0+5000.0*1.0+2000.0*1.0+2000.0+0.0+1.75*0.307267883373706+1.75*0.0160883895861106+1.5*5.92879328325965E-4+1.75*0.00338742677192689+1.5*0.0366287198730455 = 9100.627633873331' final score ~ 9100 reviewer: smiao gave 0
Rendered MathML:
e++e-2superscriptesuperscripte2\frac{e^{+}+e^{-}}{2}
End of MathML
.

Hit idp3514128

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 9100
  • Reference to collection: _PREFIX_/61/f024377.xhtml#idp3514128
found all required tokens in TeX $\frac{e^{+}+e^{-}}{2}$ at pos:482662(86%) CMML match: 0=apply[divide;apply[plus;apply[ csymbol[superscript];ci[e];plus];apply[ csymbol[superscript];ci[e];minus]];cn[2]]] 1=plus];apply[ csymbol[superscript];ci[e 2=minus] 3=cn[2]] PMML match: 0=mfrac[mrow[msup[mi[e];mo[+]];mo[+];msup[mi[e];mo[-]]];mn[2]] 1=mo[+] 2=msup[mi[e];mo[-]] 3=mn[2] PMML exact match bonus. Scoringfunction: ' + TeX_HIT_SCORE + CMML_SCORE * 1.0 + PMML_SCORE * 1.0 + PMML_SCORE + NO_TEXT_SCORE + 1.75 * TOKEN_SCORE[e] + 1.75 * TOKEN_SCORE[+] + 1.5 * TOKEN_SCORE[\] + 1.75 * TOKEN_SCORE[^] + 1.5 * TOKEN_SCORE[frac] =+100.0+5000.0*1.0+2000.0*1.0+2000.0+0.0+1.75*0.307267883373706+1.75*0.0160883895861106+1.5*5.92879328325965E-4+1.75*0.00338742677192689+1.5*0.0366287198730455 = 9100.627633873331' final score ~ 9100 reviewer: smiao gave 0
Rendered MathML:
e++e-2superscriptesuperscripte2\frac{e^{+}+e^{-}}{2}
End of MathML
.

Hit idp3532048

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 9100
  • Reference to collection: _PREFIX_/61/f024377.xhtml#idp3532048
found all required tokens in TeX $\frac{e^{+}+e^{-}}{2}$ at pos:485312(86%) CMML match: 0=apply[divide;apply[plus;apply[ csymbol[superscript];ci[e];plus];apply[ csymbol[superscript];ci[e];minus]];cn[2]]] 1=plus];apply[ csymbol[superscript];ci[e 2=minus] 3=cn[2]] PMML match: 0=mfrac[mrow[msup[mi[e];mo[+]];mo[+];msup[mi[e];mo[-]]];mn[2]] 1=mo[+] 2=msup[mi[e];mo[-]] 3=mn[2] PMML exact match bonus. Scoringfunction: ' + TeX_HIT_SCORE + CMML_SCORE * 1.0 + PMML_SCORE * 1.0 + PMML_SCORE + NO_TEXT_SCORE + 1.75 * TOKEN_SCORE[e] + 1.75 * TOKEN_SCORE[+] + 1.5 * TOKEN_SCORE[\] + 1.75 * TOKEN_SCORE[^] + 1.5 * TOKEN_SCORE[frac] =+100.0+5000.0*1.0+2000.0*1.0+2000.0+0.0+1.75*0.307267883373706+1.75*0.0160883895861106+1.5*5.92879328325965E-4+1.75*0.00338742677192689+1.5*0.0366287198730455 = 9100.627633873331' final score ~ 9100 reviewer: smiao gave 0
Rendered MathML:
e++e-2superscriptesuperscripte2\frac{e^{+}+e^{-}}{2}
End of MathML
.

Hit idp3566528

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 9100
  • Reference to collection: _PREFIX_/61/f024377.xhtml#idp3566528
found all required tokens in TeX $\frac{e^{+}+e^{-}}{2}$ at pos:490410(87%) CMML match: 0=apply[divide;apply[plus;apply[ csymbol[superscript];ci[e];plus];apply[ csymbol[superscript];ci[e];minus]];cn[2]]] 1=plus];apply[ csymbol[superscript];ci[e 2=minus] 3=cn[2]] PMML match: 0=mfrac[mrow[msup[mi[e];mo[+]];mo[+];msup[mi[e];mo[-]]];mn[2]] 1=mo[+] 2=msup[mi[e];mo[-]] 3=mn[2] PMML exact match bonus. Scoringfunction: ' + TeX_HIT_SCORE + CMML_SCORE * 1.0 + PMML_SCORE * 1.0 + PMML_SCORE + NO_TEXT_SCORE + 1.75 * TOKEN_SCORE[e] + 1.75 * TOKEN_SCORE[+] + 1.5 * TOKEN_SCORE[\] + 1.75 * TOKEN_SCORE[^] + 1.5 * TOKEN_SCORE[frac] =+100.0+5000.0*1.0+2000.0*1.0+2000.0+0.0+1.75*0.307267883373706+1.75*0.0160883895861106+1.5*5.92879328325965E-4+1.75*0.00338742677192689+1.5*0.0366287198730455 = 9100.627633873331' final score ~ 9100 reviewer: smiao gave 0
Rendered MathML:
e++e-2superscriptesuperscripte2\frac{e^{+}+e^{-}}{2}
End of MathML
.

Hit idp3622752

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 9100
  • Reference to collection: _PREFIX_/61/f024377.xhtml#idp3622752
found all required tokens in TeX $\frac{e^{+}+e^{-}}{2}$ at pos:498128(89%) CMML match: 0=apply[divide;apply[plus;apply[ csymbol[superscript];ci[e];plus];apply[ csymbol[superscript];ci[e];minus]];cn[2]]] 1=plus];apply[ csymbol[superscript];ci[e 2=minus] 3=cn[2]] PMML match: 0=mfrac[mrow[msup[mi[e];mo[+]];mo[+];msup[mi[e];mo[-]]];mn[2]] 1=mo[+] 2=msup[mi[e];mo[-]] 3=mn[2] PMML exact match bonus. Scoringfunction: ' + TeX_HIT_SCORE + CMML_SCORE * 1.0 + PMML_SCORE * 1.0 + PMML_SCORE + NO_TEXT_SCORE + 1.75 * TOKEN_SCORE[e] + 1.75 * TOKEN_SCORE[+] + 1.5 * TOKEN_SCORE[\] + 1.75 * TOKEN_SCORE[^] + 1.5 * TOKEN_SCORE[frac] =+100.0+5000.0*1.0+2000.0*1.0+2000.0+0.0+1.75*0.307267883373706+1.75*0.0160883895861106+1.5*5.92879328325965E-4+1.75*0.00338742677192689+1.5*0.0366287198730455 = 9100.627633873331' final score ~ 9100 reviewer: smiao gave 0
Rendered MathML:
e++e-2superscriptesuperscripte2\frac{e^{+}+e^{-}}{2}
End of MathML
.

Hit idp3704544

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 9100
  • Reference to collection: _PREFIX_/61/f024377.xhtml#idp3704544
found all required tokens in TeX $\frac{e^{+}+e^{-}}{2}$ at pos:510196(91%) CMML match: 0=apply[divide;apply[plus;apply[ csymbol[superscript];ci[e];plus];apply[ csymbol[superscript];ci[e];minus]];cn[2]]] 1=plus];apply[ csymbol[superscript];ci[e 2=minus] 3=cn[2]] PMML match: 0=mfrac[mrow[msup[mi[e];mo[+]];mo[+];msup[mi[e];mo[-]]];mn[2]] 1=mo[+] 2=msup[mi[e];mo[-]] 3=mn[2] PMML exact match bonus. Scoringfunction: ' + TeX_HIT_SCORE + CMML_SCORE * 1.0 + PMML_SCORE * 1.0 + PMML_SCORE + NO_TEXT_SCORE + 1.75 * TOKEN_SCORE[e] + 1.75 * TOKEN_SCORE[+] + 1.5 * TOKEN_SCORE[\] + 1.75 * TOKEN_SCORE[^] + 1.5 * TOKEN_SCORE[frac] =+100.0+5000.0*1.0+2000.0*1.0+2000.0+0.0+1.75*0.307267883373706+1.75*0.0160883895861106+1.5*5.92879328325965E-4+1.75*0.00338742677192689+1.5*0.0366287198730455 = 9100.627633873331' final score ~ 9100 reviewer: smiao gave 0
Rendered MathML:
e++e-2superscriptesuperscripte2\frac{e^{+}+e^{-}}{2}
End of MathML
.

Hit idp3726016

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 9100
  • Reference to collection: _PREFIX_/61/f024377.xhtml#idp3726016
found all required tokens in TeX $\frac{e^{+}+e^{-}}{2}$ at pos:513937(91%) CMML match: 0=apply[divide;apply[plus;apply[ csymbol[superscript];ci[e];plus];apply[ csymbol[superscript];ci[e];minus]];cn[2]]] 1=plus];apply[ csymbol[superscript];ci[e 2=minus] 3=cn[2]] PMML match: 0=mfrac[mrow[msup[mi[e];mo[+]];mo[+];msup[mi[e];mo[-]]];mn[2]] 1=mo[+] 2=msup[mi[e];mo[-]] 3=mn[2] PMML exact match bonus. Scoringfunction: ' + TeX_HIT_SCORE + CMML_SCORE * 1.0 + PMML_SCORE * 1.0 + PMML_SCORE + NO_TEXT_SCORE + 1.75 * TOKEN_SCORE[e] + 1.75 * TOKEN_SCORE[+] + 1.5 * TOKEN_SCORE[\] + 1.75 * TOKEN_SCORE[^] + 1.5 * TOKEN_SCORE[frac] =+100.0+5000.0*1.0+2000.0*1.0+2000.0+0.0+1.75*0.307267883373706+1.75*0.0160883895861106+1.5*5.92879328325965E-4+1.75*0.00338742677192689+1.5*0.0366287198730455 = 9100.627633873331' final score ~ 9100 reviewer: smiao gave 0
Rendered MathML:
e++e-2superscriptesuperscripte2\frac{e^{+}+e^{-}}{2}
End of MathML
.

Hit idp3881904

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 9100
  • Reference to collection: _PREFIX_/61/f024377.xhtml#idp3881904
found all required tokens in TeX $\frac{e^{+}+e^{-}}{2}$ at pos:535293(95%) CMML match: 0=apply[divide;apply[plus;apply[ csymbol[superscript];ci[e];plus];apply[ csymbol[superscript];ci[e];minus]];cn[2]]] 1=plus];apply[ csymbol[superscript];ci[e 2=minus] 3=cn[2]] PMML match: 0=mfrac[mrow[msup[mi[e];mo[+]];mo[+];msup[mi[e];mo[-]]];mn[2]] 1=mo[+] 2=msup[mi[e];mo[-]] 3=mn[2] PMML exact match bonus. Scoringfunction: ' + TeX_HIT_SCORE + CMML_SCORE * 1.0 + PMML_SCORE * 1.0 + PMML_SCORE + NO_TEXT_SCORE + 1.75 * TOKEN_SCORE[e] + 1.75 * TOKEN_SCORE[+] + 1.5 * TOKEN_SCORE[\] + 1.75 * TOKEN_SCORE[^] + 1.5 * TOKEN_SCORE[frac] =+100.0+5000.0*1.0+2000.0*1.0+2000.0+0.0+1.75*0.307267883373706+1.75*0.0160883895861106+1.5*5.92879328325965E-4+1.75*0.00338742677192689+1.5*0.0366287198730455 = 9100.627633873331' final score ~ 9100 reviewer: smiao gave 0
Rendered MathML:
e++e-2superscriptesuperscripte2\frac{e^{+}+e^{-}}{2}
End of MathML
.

Hit idp509168

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 9100
  • Reference to collection: _PREFIX_/61/f024377.xhtml#idp509168
found all required tokens in TeX $\frac{e^{+}+e^{-}}{2}$ at pos:68542(12%) CMML match: 0=apply[divide;apply[plus;apply[ csymbol[superscript];ci[e];plus];apply[ csymbol[superscript];ci[e];minus]];cn[2]]] 1=plus];apply[ csymbol[superscript];ci[e 2=minus] 3=cn[2]] PMML match: 0=mfrac[mrow[msup[mi[e];mo[+]];mo[+];msup[mi[e];mo[-]]];mn[2]] 1=mo[+] 2=msup[mi[e];mo[-]] 3=mn[2] PMML exact match bonus. Scoringfunction: ' + TeX_HIT_SCORE + CMML_SCORE * 1.0 + PMML_SCORE * 1.0 + PMML_SCORE + NO_TEXT_SCORE + 1.75 * TOKEN_SCORE[e] + 1.75 * TOKEN_SCORE[+] + 1.5 * TOKEN_SCORE[\] + 1.75 * TOKEN_SCORE[^] + 1.5 * TOKEN_SCORE[frac] =+100.0+5000.0*1.0+2000.0*1.0+2000.0+0.0+1.75*0.307267883373706+1.75*0.0160883895861106+1.5*5.92879328325965E-4+1.75*0.00338742677192689+1.5*0.0366287198730455 = 9100.627633873331' final score ~ 9100 reviewer: smiao gave 0
Rendered MathML:
e++e-2superscriptesuperscripte2\frac{e^{+}+e^{-}}{2}
End of MathML
.

Hit id60099

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 7100
  • Reference to collection: _PREFIX_/188/f075101.xhtml#id60099
found all required tokens in TeX $\ln\frac{E^{{\prime}}+E}{|E^{{\prime}}-E|}=\ln\frac{e^{{\xi^{{\prime}}}}+e^{{\xi}}}{|e^{{\xi^{{\prime}}}}-e^{{\xi}}|}=\ln\frac{e^{{(\xi^{{\prime}}-\xi)/2}}+e^{{-(\xi^{{\prime}}-\xi)/2}}}{|e^{{(\xi^{{\prime}}-\xi)/2}}-e^{{-(\xi^{{\prime}}-\xi)/2}}|}=\ln|\coth\frac{1}{2}(\xi^{{\prime}}-\xi)|,$ at pos:101401(34%) CMML match: 0=apply[divide;apply[plus;apply[ csymbol[superscript];ci[e];apply[ csymbol[superscript];ci[ξ];ci[′]]];apply[ csymbol[superscript];ci[e];ci[ξ]]];apply[abs;apply[minus;apply[ csymbol[superscript];ci[e];apply[ csymbol[superscript];ci[ξ];ci[′]]];apply[ csymbol[superscript];ci[e];ci[ξ]]]]]]];apply[eq;share;apply[ln;apply[divide;apply[plus;apply[ csymbol[superscript];ci[e];apply[divide;apply[minus;apply[ csymbol[superscript];ci[ξ];ci[′]];ci[ξ]];cn[2]]];apply[ csymbol[superscript];ci[e];apply[minus;apply[divide;apply[minus;apply[ csymbol[superscript];ci[ξ];ci[′]];ci[ξ]];cn[2]]]]];apply[abs;apply[minus;apply[ csymbol[superscript];ci[e];apply[divide;apply[minus;apply[ csymbol[superscript];ci[ξ];ci[′]];ci[ξ]];cn[2]]];apply[ csymbol[superscript];ci[e];apply[minus;apply[divide;apply[minus;apply[ csymbol[superscript];ci[ξ];ci[′]];ci[ξ]];cn[2]]]]]]]]];apply[eq;share;apply[ln;apply[abs;apply[times;apply[ ci[ coth];apply[divide;cn[1];cn[2]]];apply[minus;apply[ csymbol[superscript];ci[ξ];ci[′]];ci[ξ]]]]]]] 1=apply[ csymbol[superscript];ci[ξ];ci[′]]];apply[ csymbol[superscript];ci[e];ci[ξ]]];apply[abs;apply[minus;apply[ csymbol[superscript];ci[e];apply[ csymbol[superscript];ci[ξ];ci[′]]];apply[ csymbol[superscript];ci[e];ci[ξ]]]]]]];apply[eq;share;apply[ln;apply[divide;apply[plus;apply[ csymbol[superscript];ci[e];apply[divide;apply[minus;apply[ csymbol[superscript];ci[ξ];ci[′]];ci[ξ]];cn[2]]];apply[ csymbol[superscript];ci[e];apply[minus;apply[divide;apply[minus;apply[ csymbol[superscript];ci[ξ];ci[′]];ci[ξ]];cn[2]]]]];apply[abs;apply[minus;apply[ csymbol[superscript];ci[e];apply[divide;apply[minus;apply[ csymbol[superscript];ci[ξ];ci[′]];ci[ξ]];cn[2]]];apply[ csymbol[superscript];ci[e];apply[minus;apply[divide;apply[minus;apply[ csymbol[superscript];ci[ξ];ci[′]];ci[ξ]];cn[2]]]]]]]]];apply[eq;share;apply[ln;apply[abs;apply[times;apply[ ci[ coth];apply[divide;cn[1];cn[2]]];apply[minus;apply[ csymbol[superscript];ci[ξ 2=ci[′] 3=ci[ξ]]]]]] PMML match: 0=mfrac[mrow[msup[mi[e];msup[mi[ξ];mo[′]]];mo[+];msup[mi[e];mi[ξ]]];mfenced[mrow[msup[mi[e];msup[mi[ξ];mo[′]]];mo[-];msup[mi[e];mi[ξ]]]]]];mo[=];mrow[mi[ln];mfrac[mrow[msup[mi[e];mrow[mfenced[mrow[msup[mi[ξ];mo[′]];mo[-];mi[ξ]]];mo[/];mn[2]]];mo[+];msup[mi[e];mrow[mo[-];mrow[mfenced[mrow[msup[mi[ξ];mo[′]];mo[-];mi[ξ]]];mo[/];mn[2]]]]];mfenced[mrow[msup[mi[e];mrow[mfenced[mrow[msup[mi[ξ];mo[′]];mo[-];mi[ξ]]];mo[/];mn[2]]];mo[-];msup[mi[e];mrow[mo[-];mrow[mfenced[mrow[msup[mi[ξ];mo[′]];mo[-];mi[ξ]]];mo[/];mn[2]]]]]]]];mo[=];mrow[mi[ln];mfenced[mrow[mrow[mi[ coth];mfrac[mn[1];mn[2]]];mfenced[mrow[msup[mi[ξ];mo[′]];mo[-];mi[ξ]]]]]]];mo[,]] 1=msup[mi[ξ];mo[′]]];mo[+];msup[mi[e];mi[ξ]]];mfenced[mrow[msup[mi[e];msup[mi[ξ];mo[′]]];mo[-];msup[mi[e];mi[ξ]]]]]];mo[=];mrow[mi[ln];mfrac[mrow[msup[mi[e];mrow[mfenced[mrow[msup[mi[ξ];mo[′]];mo[-];mi[ξ]]];mo[/];mn[2]] 2=msup[mi[e];mrow[mo[-];mrow[mfenced[mrow[msup[mi[ξ];mo[′]];mo[-];mi[ξ]]];mo[/];mn[2]]]]];mfenced[mrow[msup[mi[e];mrow[mfenced[mrow[msup[mi[ξ];mo[′]];mo[-];mi[ξ]]];mo[/];mn[2]]];mo[-];msup[mi[e];mrow[mo[-];mrow[mfenced[mrow[msup[mi[ξ];mo[′]];mo[-];mi[ξ]]];mo[/];mn[2]]]]]]]];mo[=];mrow[mi[ln];mfenced[mrow[mrow[mi[ coth];mfrac[mn[1];mn[2]]];mfenced[mrow[msup[mi[ξ];mo[′]];mo[-];mi[ξ]]]]]] 3=mo[,] Scoringfunction: ' + TeX_HIT_SCORE + CMML_SCORE * 1.0 + PMML_SCORE * 1.0 + NO_TEXT_SCORE + 1.99609375 * TOKEN_SCORE[e] + 1.875 * TOKEN_SCORE[+] + 1.9999999997671694 * TOKEN_SCORE[\] + 1.9999923706054688 * TOKEN_SCORE[^] + 1.9375 * TOKEN_SCORE[frac] =+100.0+5000.0*1.0+2000.0*1.0+0.0+1.99609375*0.307267883373706+1.875*0.0160883895861106+1.9999999997671694*5.92879328325965E-4+1.9999923706054688*0.00338742677192689+1.9375*0.0366287198730455 = 7100.7224299631625' final score ~ 7100 reviewer: smiao gave 0
Rendered MathML:
lnE+EE-E=lneξ+eξeξ-eξ=lneξ-ξ/2+e-ξ-ξ/2eξ-ξ/2-e-ξ-ξ/2=lncoth12ξ-ξ,superscriptEEsuperscriptEEsuperscriptesuperscriptξsuperscripteξsuperscriptesuperscriptξsuperscripteξsuperscriptesuperscriptξξ2superscriptesuperscriptξξ2superscriptesuperscriptξξ2superscriptesuperscriptξξ2coth12superscriptξξ\ln\frac{E^{{\prime}}+E}{|E^{{\prime}}-E|}=\ln\frac{e^{{\xi^{{\prime}}}}+e^{{\xi}}}{|e^{{\xi^{{\prime}}}}-e^{{\xi}}|}=\ln\frac{e^{{(\xi^{{\prime}}-\xi)/2}}+e^{{-(\xi^{{\prime}}-\xi)/2}}}{|e^{{(\xi^{{\prime}}-\xi)/2}}-e^{{-(\xi^{{\prime}}-\xi)/2}}|}=\ln|\coth\frac{1}{2}(\xi^{{\prime}}-\xi)|,
End of MathML
.

Hit idp2113264

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 7100
  • Reference to collection: _PREFIX_/112/f044467.xhtml#idp2113264
found all required tokens in TeX $G_{S}(iy,0)=\log\left|\frac{e^{{-\alpha y}}+1}{e^{{-\alpha y}}-1}\right|=\log\coth\frac{\alpha\lvert y\rvert}{2}\geqslant\log\coth\frac{\pi\alpha}{2}.$ at pos:260315(46%) CMML match: 0=apply[divide;apply[plus;apply[ csymbol[superscript];ci[e];apply[minus;apply[times;ci[α];ci[y]]]];cn[1]];apply[minus;apply[ csymbol[superscript];ci[e];apply[minus;apply[times;ci[α];ci[y]]]];cn[1]]]]]];apply[eq;share;apply[log;apply[ csymbol[hyperbolic-cotangent];apply[divide;apply[times;ci[α];apply[abs;ci[y]]];cn[2]]]]];apply[geq;share;apply[log;apply[ csymbol[hyperbolic-cotangent];apply[divide;apply[times;ci[π];ci[α]];cn[2]]]]]]] 1=apply[minus;apply[times;ci[α];ci[y]]]];cn[1]];apply[minus;apply[ csymbol[superscript];ci[e];apply[minus;apply[times;ci[α];ci[y]]]];cn[1]]]]]];apply[eq;share;apply[log;apply[ csymbol[hyperbolic-cotangent];apply[divide;apply[times;ci[α];apply[abs;ci[y]]];cn[2]]]]];apply[geq;share;apply[log;apply[ csymbol[hyperbolic-cotangent];apply[divide;apply[times;ci[π 2=ci[α] 3=cn[2]]]]]] PMML match: 0=mfrac[mrow[msup[mi[e];mrow[mo[-];mrow[mi[α];mi[y]]]];mo[+];mn[1]];mrow[msup[mi[e];mrow[mo[-];mrow[mi[α];mi[y]]]];mo[-];mn[1]]];mo[|]]];mo[=];mrow[mi[log];mrow[mi[ coth];mfrac[mrow[mi[α];mrow[mo[|];mi[y];mo[|]]];mn[2]]]];mo[⩾];mrow[mi[log];mrow[mi[ coth];mfrac[mrow[mi[π];mi[α]];mn[2]]]]];mo[.]] 1=mrow[mo[-];mrow[mi[α];mi[y]]] 2=mn[1]];mrow[msup[mi[e];mrow[mo[-];mrow[mi[α];mi[y]]]];mo[-];mn[1]]];mo[|]]];mo[=];mrow[mi[log];mrow[mi[ coth];mfrac[mrow[mi[α];mrow[mo[|];mi[y];mo[|]]];mn[2]]]];mo[⩾];mrow[mi[log];mrow[mi[ coth];mfrac[mrow[mi[π];mi[α]];mn[2]]]] 3=mo[.] Scoringfunction: ' + TeX_HIT_SCORE + CMML_SCORE * 1.0 + PMML_SCORE * 1.0 + NO_TEXT_SCORE + 1.75 * TOKEN_SCORE[e] + 1.5 * TOKEN_SCORE[+] + 1.9999961853027344 * TOKEN_SCORE[\] + 1.75 * TOKEN_SCORE[^] + 1.875 * TOKEN_SCORE[frac] =+100.0+5000.0*1.0+2000.0*1.0+0.0+1.75*0.307267883373706+1.5*0.0160883895861106+1.9999961853027344*5.92879328325965E-4+1.75*0.00338742677192689+1.875*0.0366287198730455 = 7100.637643983291' final score ~ 7100 reviewer: smiao gave 0
Rendered MathML:
GS(iy,0)=log|e-αy+1e-αy-1|=logcothα|y|2logcothπα2.subscriptGSiy0superscripteαy1superscripteαy1hyperbolic-cotangentαy2hyperbolic-cotangentπα2G_{S}(iy,0)=\log\left|\frac{e^{{-\alpha y}}+1}{e^{{-\alpha y}}-1}\right|=\log\coth\frac{\alpha\lvert y\rvert}{2}\geqslant\log\coth\frac{\pi\alpha}{2}.
End of MathML
.

Hit idp23587680

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 7100
  • Reference to collection: _PREFIX_/127/f050718.xhtml#idp23587680
found all required tokens in TeX $\displaystyle\frac{{\rm E}_{2}(\tau _{{\rm d}})}{2}+\frac{e^{{-\tau _{{\rm d}}}}+\tau _{{\rm d}}{\rm E}_{2}(\tau _{{\rm d}})}{4\tau _{{\rm R}}}$ at pos:555014(46%) CMML match: 0=apply[divide;apply[plus;apply[ csymbol[superscript];ci[e];apply[minus;apply[ csymbol[subscript];ci[τ];ci[d]]]];apply[times;apply[ csymbol[subscript];ci[τ];ci[d]];apply[ csymbol[subscript];ci[E];cn[2]];apply[ csymbol[subscript];ci[τ];ci[d]]]];apply[times;cn[4];apply[ csymbol[subscript];ci[τ];ci[R]]]]]] 1=apply[minus;apply[ csymbol[subscript];ci[τ];ci[d]]]];apply[times;apply[ csymbol[subscript];ci[τ];ci[d]];apply[ csymbol[subscript];ci[E];cn[2]];apply[ csymbol[subscript];ci[τ];ci[d]]]];apply[times;cn[4];apply[ csymbol[subscript 2=ci[τ 3=ci[R]]]]] PMML match: 0=mfrac[mrow[msup[mi[e];mrow[mo[-];msub[mi[τ];mi[d]]]];mo[+];mrow[msub[mi[τ];mi[d]];msub[mi[E];mn[2]];mfenced[msub[mi[τ];mi[d]]]]];mrow[mn[4];msub[mi[τ];mi[R]]]]]] 1=mrow[mo[-];msub[mi[τ];mi[d]]] 2=mrow[msub[mi[τ];mi[d]];msub[mi[E];mn[2]];mfenced[msub[mi[τ];mi[d]]]]];mrow[mn[4];msub[mi[τ 3=mi[R]]]]] Scoringfunction: ' + TeX_HIT_SCORE + CMML_SCORE * 1.0 + PMML_SCORE * 1.0 + NO_TEXT_SCORE + 1.5 * TOKEN_SCORE[e] + 1.75 * TOKEN_SCORE[+] + 1.999969482421875 * TOKEN_SCORE[\] + 1.5 * TOKEN_SCORE[^] + 1.75 * TOKEN_SCORE[frac] =+100.0+5000.0*1.0+2000.0*1.0+0.0+1.5*0.307267883373706+1.75*0.0160883895861106+1.999969482421875*5.92879328325965E-4+1.5*0.00338742677192689+1.75*0.0366287198730455 = 7100.559423647335' final score ~ 7100 reviewer: smiao gave 0
Rendered MathML:
E2τd2+e-τd+τdE2τd4τRsubscriptE2subscriptτd2superscriptesubscriptτdsubscriptτdsubscriptE2subscriptτd4subscriptτR\displaystyle\frac{{\rm E}_{2}(\tau _{{\rm d}})}{2}+\frac{e^{{-\tau _{{\rm d}}}}+\tau _{{\rm d}}{\rm E}_{2}(\tau _{{\rm d}})}{4\tau _{{\rm R}}}
End of MathML
.

Hit id142388

  • Reviwer: wsperber
  • Reviwer score: 0
  • Formulasearchengine score: 100
  • Reference to collection: _PREFIX_/5/f001756.xhtml#id142388
found all required tokens in TeX $\gamma^{{-1}}e^{{\frac{(n+1)^{2}}{4\gamma^{2}}}}\int _{{-\infty}}^{\infty}e^{{-y^{2}}}\sin(2\pi\gamma y+\pi(n+1))\, dy=0,$ at pos:1379181(49%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_SCORE + 1.75 * TOKEN_SCORE[e] + 1.875 * TOKEN_SCORE[+] + 1.99951171875 * TOKEN_SCORE[\] + 1.9921875 * TOKEN_SCORE[^] + 1.5 * TOKEN_SCORE[frac] =+100.0+0.0+1.75*0.307267883373706+1.875*0.0160883895861106+1.99951171875*5.92879328325965E-4+1.9921875*0.00338742677192689+1.5*0.0366287198730455 = 100.6307614646245' final score ~ 100 reviewer: wsperber gave 0
Rendered MathML:
γ-1en+124γ2-e-y2sin2πγy+πn+1dy=0,superscriptγ1superscriptesuperscriptn124superscriptγ2superscriptsubscriptsuperscriptesuperscripty22πγyπn1dy0\gamma^{{-1}}e^{{\frac{(n+1)^{2}}{4\gamma^{2}}}}\int _{{-\infty}}^{\infty}e^{{-y^{2}}}\sin(2\pi\gamma y+\pi(n+1))\, dy=0,
End of MathML
.

Hit idm1008096

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 100
  • Reference to collection: _PREFIX_/131/f052346.xhtml#idm1008096
found all required tokens in TeX $\displaystyle\langle H_{{th}}^{2}\rangle-\langle H_{{th}}\rangle^{2}=\frac{\partial^{2}\ln Z}{\partial\beta^{2}}=N\frac{\epsilon^{2}e^{{\beta\epsilon}}}{(1+e^{{\beta\epsilon}})^{2}},$ at pos:64242(39%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_SCORE + 1.75 * TOKEN_SCORE[e] + 1.5 * TOKEN_SCORE[+] + 1.9999847412109375 * TOKEN_SCORE[\] + 1.99609375 * TOKEN_SCORE[^] + 1.75 * TOKEN_SCORE[frac] =+100.0+0.0+1.75*0.307267883373706+1.5*0.0160883895861106+1.9999847412109375*5.92879328325965E-4+1.99609375*0.00338742677192689+1.75*0.0366287198730455 = 100.63389901107904' final score ~ 100 reviewer: smiao gave 0
Rendered MathML:
Hth2-Hth2=2lnZβ2=Nϵ2eβϵ(1+eβϵ)2,superscriptsubscriptHth2superscriptsubscriptHth2superscript2Zsuperscriptβ2Nsuperscriptϵ2superscripteβϵsuperscript1superscripteβϵ2\displaystyle\langle H_{{th}}^{2}\rangle-\langle H_{{th}}\rangle^{2}=\frac{\partial^{2}\ln Z}{\partial\beta^{2}}=N\frac{\epsilon^{2}e^{{\beta\epsilon}}}{(1+e^{{\beta\epsilon}})^{2}},
End of MathML
.

Hit idp30347360

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 100
  • Reference to collection: _PREFIX_/17/f006455.xhtml#idp30347360
found all required tokens in TeX $\displaystyle=\frac{1-e^{{-2T\beta|k|^{{2/(m+1)}}}}}{2\beta|k|^{{2/(m+1)}}}\|\left\langle D_{\theta}\right\rangle\varphi _{0}\| _{{L^{2}}}^{2}$ at pos:1389800(87%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_SCORE + 1.5 * TOKEN_SCORE[e] + 1.75 * TOKEN_SCORE[+] + 1.999755859375 * TOKEN_SCORE[\] + 1.96875 * TOKEN_SCORE[^] + 1.5 * TOKEN_SCORE[frac] =+100.0+0.0+1.5*0.307267883373706+1.75*0.0160883895861106+1.999755859375*5.92879328325965E-4+1.96875*0.00338742677192689+1.5*0.0366287198730455 = 100.55185419701377' final score ~ 100 reviewer: smiao gave 0
Rendered MathML:
=1-e-2Tβ|k|2/(m+1)2β|k|2/(m+1)Dθφ0L22absent1superscripte2Tβsuperscriptk2m12βsuperscriptk2m1superscriptsubscriptnormsubscriptDθsubscriptφ0superscriptL22\displaystyle=\frac{1-e^{{-2T\beta|k|^{{2/(m+1)}}}}}{2\beta|k|^{{2/(m+1)}}}\|\left\langle D_{\theta}\right\rangle\varphi _{0}\| _{{L^{2}}}^{2}
End of MathML
.

Hit idp30351312

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 100
  • Reference to collection: _PREFIX_/203/f081135.xhtml#idp30351312
found all required tokens in TeX $\displaystyle\quad\times e^{{\frac{1}{2}\left\langle f,x\right\rangle _{{A^{{-1}}}}-\langle\frac{\coth\left(t\sqrt{D}\right)}{\sqrt{D}}g,x\rangle+\langle\frac{1}{\sqrt{D}\sinh\left(t\sqrt{D}\right)}g,x^{{0}}\rangle}}\tag{2.2}$ at pos:1413853(87%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_SCORE + 1.5 * TOKEN_SCORE[e] + 1.5 * TOKEN_SCORE[+] + 1.9999999701976776 * TOKEN_SCORE[\] + 1.875 * TOKEN_SCORE[^] + 1.875 * TOKEN_SCORE[frac] =+100.0+0.0+1.5*0.307267883373706+1.5*0.0160883895861106+1.9999999701976776*5.92879328325965E-4+1.875*0.00338742677192689+1.875*0.0366287198730455 = 100.56125044303803' final score ~ 100 reviewer: smiao gave 0
Rendered MathML:
×e12f,xA-1-coth(tD)Dg,x+1Dsinh(tD)g,x0superscripte12subscriptfxsuperscriptA1hyperbolic-cotangenttDDgx1DtDgsuperscriptx0\displaystyle\quad\times e^{{\frac{1}{2}\left\langle f,x\right\rangle _{{A^{{-1}}}}-\langle\frac{\coth\left(t\sqrt{D}\right)}{\sqrt{D}}g,x\rangle+\langle\frac{1}{\sqrt{D}\sinh\left(t\sqrt{D}\right)}g,x^{{0}}\rangle}}\tag{2.2}
End of MathML
.

Hit idp3115568

  • Reviwer: wsperber
  • Reviwer score: 0
  • Formulasearchengine score: 100
  • Reference to collection: _PREFIX_/60/f023706.xhtml#idp3115568
found all required tokens in TeX $d_{t}+d_{{t_{1}}}-d=0,\qquad d_{x}+d_{{t_{1}}}d-\frac{1}{2}d^{2}-\frac{1}{2}e^{{2t_{1}}}=-\frac{1}{2}e^{{2t}}.$ at pos:388767(33%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_SCORE + 1.75 * TOKEN_SCORE[e] + 1.75 * TOKEN_SCORE[+] + 1.9375 * TOKEN_SCORE[\] + 1.875 * TOKEN_SCORE[^] + 1.875 * TOKEN_SCORE[frac] =+100.0+0.0+1.75*0.307267883373706+1.75*0.0160883895861106+1.9375*5.92879328325965E-4+1.875*0.00338742677192689+1.875*0.0366287198730455 = 100.64205245633764' final score ~ 100 reviewer: wsperber gave 0
Rendered MathML:
dt+dt1-d=0,dx+dt1d-12d2-12e2t1=-12e2t.subscriptdtsubscriptdsubscriptt1d0subscriptdxsubscriptdsubscriptt1d12superscriptd212superscripte2subscriptt112superscripte2td_{t}+d_{{t_{1}}}-d=0,\qquad d_{x}+d_{{t_{1}}}d-\frac{1}{2}d^{2}-\frac{1}{2}e^{{2t_{1}}}=-\frac{1}{2}e^{{2t}}.
End of MathML
.

Hit idp34728848

  • Reviwer: wsperber
  • Reviwer score: 0
  • Formulasearchengine score: 100
  • Reference to collection: _PREFIX_/18/f006899.xhtml#idp34728848
found all required tokens in TeX $\displaystyle=\frac{2^{{k+1}}}{(2k+1)!}\int _{{-\infty}}^{{\infty}}e^{{-u^{{2}}}}\mathcal{H}_{{2j}}(u)\mathcal{H}_{{2k}}(u/\sqrt{2})du$ at pos:1928311(97%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_SCORE + 1.5 * TOKEN_SCORE[e] + 1.75 * TOKEN_SCORE[+] + 1.99609375 * TOKEN_SCORE[\] + 1.9375 * TOKEN_SCORE[^] + 1.5 * TOKEN_SCORE[frac] =+100.0+0.0+1.5*0.307267883373706+1.75*0.0160883895861106+1.99609375*5.92879328325965E-4+1.9375*0.00338742677192689+1.5*0.0366287198730455 = 100.5517461687382' final score ~ 100 reviewer: wsperber gave 0
Rendered MathML:
=2k+1(2k+1)!-e-u2H2j(u)H2k(u/2)duabsentsuperscript2k12k1superscriptsubscriptsuperscriptesuperscriptu2subscriptH2jusubscriptH2ku2du\displaystyle=\frac{2^{{k+1}}}{(2k+1)!}\int _{{-\infty}}^{{\infty}}e^{{-u^{{2}}}}\mathcal{H}_{{2j}}(u)\mathcal{H}_{{2k}}(u/\sqrt{2})du
End of MathML
.

Hit idp5082976

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 100
  • Reference to collection: _PREFIX_/59/f023582.xhtml#idp5082976
found all required tokens in TeX $\langle v\rangle=\frac{2k\,\tanh\left(\frac{k\, T}{2}\right)}{{\mathrm{e}}^{{-k\, T}}-1}\langle x\rangle+v_{0}$ at pos:625418(89%) Scoringfunction: ' + TeX_HIT_SCORE + NO_TEXT_SCORE + 1.5 * TOKEN_SCORE[e] + 1.5 * TOKEN_SCORE[+] + 1.9998779296875 * TOKEN_SCORE[\] + 1.5 * TOKEN_SCORE[^] + 1.75 * TOKEN_SCORE[frac] =+100.0+0.0+1.5*0.307267883373706+1.5*0.0160883895861106+1.9998779296875*5.92879328325965E-4+1.5*0.00338742677192689+1.75*0.0366287198730455 = 100.55540149565913' final score ~ 100 reviewer: smiao gave 0
Rendered MathML:
v=2ktanh(kT2)e-kT-1x+v0v2kkT2superscriptekT1xsubscriptv0\langle v\rangle=\frac{2k\,\tanh\left(\frac{k\, T}{2}\right)}{{\mathrm{e}}^{{-k\, T}}-1}\langle x\rangle+v_{0}
End of MathML
.

Hit id104602

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 50
  • Reference to collection: _PREFIX_/145/f057798.xhtml#id104602
found all required tokens ([e x 2, … x 2, ⁢ x 12, λ x 2, C x 2, δ x 4, + x 4, N x 6, η x 10, j x 10, / x 2, k x 4, ,, ∈ x 2, i x 2, - x 8, 2 x 12, 1 x 12, q x 10, ∑ x 2, σ x 2, ∞ x 3, =, Z x 2]) in PMML at pos:770968(72%) Scoringfunction: ' + PMML_HIT_SCORE + NO_TEXT_SCORE + 1.75 * TOKEN_SCORE[e] + 1.9375 * TOKEN_SCORE[+] =+50.0+0.0+1.75*0.307267883373706+1.9375*0.0160883895861106 = 50.56889005072707' final score ~ 50 reviewer: smiao gave 0
Rendered MathML:
1qj=--1jq2k+δ-2+2/Nj+2k-2i+δj/2ηZN-1σ,jqηC-1η-eλqη1qηN-11subscriptqsuperscriptsubscriptjsuperscript1jsuperscriptq2kδ22Nj2k2iδj2superscriptsubscriptηsuperscriptZN1σjsuperscriptqηsuperscriptC1ηsubscripteλsubscriptqsubscriptη1subscriptqsubscriptηN1
End of MathML
.

Hit id110779

  • Reviwer: wsperber
  • Reviwer score: 0
  • Formulasearchengine score: 50
  • Reference to collection: _PREFIX_/107/f042448.xhtml#id110779
found all required tokens ([d x 4, ξ x 4, e x 6, ⁢ x 10, + x 2, ⋅ x 2, h x 4, , x 4, i x 2, -, ∫, 1 x 4, t x 6, ′ x 12, P x 2, R x 2, ×, =, x x 10, τ x 4]) in PMML at pos:853607(50%) Scoringfunction: ' + PMML_HIT_SCORE + NO_TEXT_SCORE + 1.984375 * TOKEN_SCORE[e] + 1.75 * TOKEN_SCORE[+] =+50.0+0.0+1.984375*0.307267883373706+1.75*0.0160883895861106 = 50.63788938784539' final score ~ 50 reviewer: wsperber gave 0
Rendered MathML:
hx1,ξ,τ=Pe×Rhx1e+x,te-ixξ+tτdxdt,superscripthsubscriptx1superscriptξτsubscriptsubscriptPeRhsubscriptx1esuperscriptxtsuperscripteisuperscriptxsuperscriptξtτdsuperscriptxdt
End of MathML
.

Hit id129012

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 50
  • Reference to collection: _PREFIX_/178/f071190.xhtml#id129012
found all required tokens ([D x 2, ν x 2, d x 2, F x 2, e x 2, ⁢ x 2, + x 2, m x 2, H x 2, α x 6, 1 x 2, W x 2, r x 2, ∑, := x 2, =]) in PMML at pos:1124975(58%) Scoringfunction: ' + PMML_HIT_SCORE + NO_TEXT_SCORE + 1.75 * TOKEN_SCORE[e] + 1.75 * TOKEN_SCORE[+] =+50.0+0.0+1.75*0.307267883373706+1.75*0.0160883895861106 = 50.56587347767968' final score ~ 50 reviewer: smiao gave 0
Rendered MathML:
D:=Fν+α=1mWα+Hαred:=DsubscriptsubscriptFνsuperscriptsubscriptα1msubscriptWαsubscriptHαred
End of MathML
.

Hit id143876

  • Reviwer: cdemirkiran
  • Reviwer score: 0
  • Formulasearchengine score: 50
  • Reference to collection: _PREFIX_/124/f049428.xhtml#id143876
found all required tokens ([E x 2, 1 x 2, e x 2, P x 2, r x 4, q x 2, ⁢ x 5, 5 x 2, 4 x 2, C x 4, +, =]) in PMML at pos:1347480(96%) Scoringfunction: ' + PMML_HIT_SCORE + NO_TEXT_SCORE + 1.75 * TOKEN_SCORE[e] + 1.5 * TOKEN_SCORE[+] =+50.0+0.0+1.75*0.307267883373706+1.5*0.0160883895861106 = 50.56185138028315' final score ~ 50 reviewer: cdemirkiran gave 0
Rendered MathML:
=C5eC4qr+1PErsubscriptC5superscriptesubscriptC4qr1PsuperscriptEr
End of MathML
.

Hit id164478

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 50
  • Reference to collection: _PREFIX_/110/f043875.xhtml#id164478
found all required tokens ([ξ x 14, ≤, L x 2, M x 4, η x 14, sup x 2, β x 6, ∫, P x 2, R x 4, × x 2, 100 x 2, g, d x 12, e x 4, ⁡, ⁢ x 19, a x 4, + x 5, l x 4, ., j x 2, / x 2, k x 8, h x 2, ⋅ x 4, , x 5, i x 2, - x 4, 2 x 10, 1 x 20, ′ x 18, ~ x 2, =, τ x 6]) in PMML at pos:1696386(55%) Scoringfunction: ' + PMML_HIT_SCORE + NO_TEXT_SCORE + 1.9375 * TOKEN_SCORE[e] + 1.96875 * TOKEN_SCORE[+] =+50.0+0.0+1.9375*0.307267883373706+1.96875*0.0160883895861106 = 50.62700554103421' final score ~ 50 reviewer: smiao gave 0
Rendered MathML:
2-k/2supaL2=1R×Pel×R2g~k1,j1η1el+η,βhξ,τηk-100ξ1-Mξ1-M+i/2kaξ1+η1,ξ+η,τ+βdξ1dη1dξdηdτdβ.superscript2superscriptk2subscriptsupsubscriptasuperscriptL21subscriptsuperscriptRsubscriptPsubscriptelR2subscript~gsubscriptk1subscriptj1subscriptη1subscriptelsuperscriptηβhsuperscriptξτsubscriptηsuperscriptk100subscriptξ1Msubscriptξ1Misuperscript2superscriptkasubscriptξ1subscriptη1superscriptξsuperscriptητβdsubscriptξ1dsubscriptη1dsuperscriptξdsuperscriptηdτdβ
End of MathML
.

Hit id54417

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 50
  • Reference to collection: _PREFIX_/12/f004730.xhtml#id54417
found all required tokens ([e x 2, ∂ x 2, Λ x 2, ⁢ x 4, +, ,, -, 2 x 4, 1 x 2, 0 x 4, q x 4, X x 4, =]) in PMML at pos:13718(5%) Scoringfunction: ' + PMML_HIT_SCORE + NO_TEXT_SCORE + 1.75 * TOKEN_SCORE[e] + 1.5 * TOKEN_SCORE[+] =+50.0+0.0+1.75*0.307267883373706+1.5*0.0160883895861106 = 50.56185138028315' final score ~ 50 reviewer: smiao gave 0
Rendered MathML:
02-12qX+ΛeqX=0,subscriptsuperscript20subscriptsuperscript21qXΛsuperscripteqX0
End of MathML
.

Hit id56184

  • Reviwer: wsperber
  • Reviwer score: 0
  • Formulasearchengine score: 50
  • Reference to collection: _PREFIX_/243/f096901.xhtml#id56184
found all required tokens ([D x 14, 2 x 12, 1 x 18, e x 8, t x 4, ∂ x 4, ⁡ x 4, ⁢ x 15, 4 x 2, +, ., =, ϕ x 12, - x 9]) in PMML at pos:39949(10%) Scoringfunction: ' + PMML_HIT_SCORE + NO_TEXT_SCORE + 1.99609375 * TOKEN_SCORE[e] + 1.5 * TOKEN_SCORE[+] =+50.0+0.0+1.99609375*0.307267883373706+1.5*0.0160883895861106 = 50.63746808595715' final score ~ 50 reviewer: wsperber gave 0
Rendered MathML:
D2-4ϕt1D-1ϕt1D-1=12D-1e2ϕD-1e-2ϕ+D-1e-2ϕD-1e2ϕ.superscriptsuperscriptD24ϕsubscriptt1superscriptD1ϕsubscriptt1D112superscriptD1superscripte2ϕsuperscriptD1superscripte2ϕsuperscriptD1superscripte2ϕsuperscriptD1superscripte2ϕ
End of MathML
.

Hit id57176

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 50
  • Reference to collection: _PREFIX_/106/f042095.xhtml#id57176
found all required tokens ([e x 2, n x 2, + x 2, ,]) in PMML at pos:55506(25%) Scoringfunction: ' + PMML_HIT_SCORE + NO_TEXT_SCORE + 1.75 * TOKEN_SCORE[e] + 1.75 * TOKEN_SCORE[+] =+50.0+0.0+1.75*0.307267883373706+1.75*0.0160883895861106 = 50.56587347767968' final score ~ 50 reviewer: smiao gave 0
Rendered MathML:
e++n,superscripten
End of MathML
.

Hit id57358

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 50
  • Reference to collection: _PREFIX_/83/f032939.xhtml#id57358
found all required tokens ([μ x 4, e x 4, θ x 6, cos, ⁡ x 3, ⁢ x 16, +, k x 14, ,, h x 12, - x 3, 3 x 2, 2 x 15, 1 x 2, 0 x 2, ∑, sin x 2, = x 2, τ x 4]) in PMML at pos:59034(16%) Scoringfunction: ' + PMML_HIT_SCORE + NO_TEXT_SCORE + 1.9375 * TOKEN_SCORE[e] + 1.5 * TOKEN_SCORE[+] =+50.0+0.0+1.9375*0.307267883373706+1.5*0.0160883895861106 = 50.61946410841572' final score ~ 50 reviewer: smiao gave 0
Rendered MathML:
k=132hek2sin2θ+22hekhμk-hτkcos2θ-hτk-hμk2sin2θ=0,superscriptsubscriptk132superscriptsubscripthek22θ22subscriptheksubscripthμksubscripthτk2θsuperscriptsubscripthτksubscripthμk22θ0
End of MathML
.

Hit id57665

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 50
  • Reference to collection: _PREFIX_/214/f085325.xhtml#id57665
found all required tokens ([2 x 3, e x 8, ⁢ x 2, + x 2, → x 8, / x 2, ,, y x 4, = x 2, i x 4, x x 4, - x 3]) in PMML at pos:66967(10%) Scoringfunction: ' + PMML_HIT_SCORE + NO_TEXT_SCORE + 1.99609375 * TOKEN_SCORE[e] + 1.75 * TOKEN_SCORE[+] =+50.0+0.0+1.99609375*0.307267883373706+1.75*0.0160883895861106 = 50.64149018335368' final score ~ 50 reviewer: smiao gave 0
Rendered MathML:
e+=-ex+iey/2,e-=ex-iey/2subscriptesubscriptexisubscriptey2subscriptesubscriptexisubscriptey2
End of MathML
.

Hit id57665

  • Reviwer: wsperber
  • Reviwer score: 0
  • Formulasearchengine score: 50
  • Reference to collection: _PREFIX_/214/f085325.xhtml#id57665
found all required tokens ([2 x 3, e x 8, ⁢ x 2, + x 2, → x 8, / x 2, ,, y x 4, = x 2, i x 4, x x 4, - x 3]) in PMML at pos:66967(10%) Scoringfunction: ' + PMML_HIT_SCORE + NO_TEXT_SCORE + 1.99609375 * TOKEN_SCORE[e] + 1.75 * TOKEN_SCORE[+] =+50.0+0.0+1.99609375*0.307267883373706+1.75*0.0160883895861106 = 50.64149018335368' final score ~ 50 reviewer: wsperber gave 0
Rendered MathML:
e+=-ex+iey/2,e-=ex-iey/2subscriptesubscriptexisubscriptey2subscriptesubscriptexisubscriptey2
End of MathML
.

Hit id59540

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 50
  • Reference to collection: _PREFIX_/169/f067357.xhtml#id59540
found all required tokens ([g x 6, E x 2, e x 2, ⁢ x 12, n x 2, ε x 4, +, ,, -, i x 4, 2 x 6, 0 x 10, s x 2, q x 2, y x 2, x x 4]) in PMML at pos:93751(34%) Scoringfunction: ' + PMML_HIT_SCORE + NO_TEXT_SCORE + 1.75 * TOKEN_SCORE[e] + 1.5 * TOKEN_SCORE[+] =+50.0+0.0+1.75*0.307267883373706+1.5*0.0160883895861106 = 50.56185138028315' final score ~ 50 reviewer: smiao gave 0
Rendered MathML:
signxiε02+g022g0ε0Ey0e-qx,signxisuperscriptsubscriptε02superscriptsubscriptg022subscriptg0subscriptε0subscriptEy0superscripteqx
End of MathML
.

Hit id59540

  • Reviwer: wsperber
  • Reviwer score: 0
  • Formulasearchengine score: 50
  • Reference to collection: _PREFIX_/169/f067357.xhtml#id59540
found all required tokens ([g x 6, E x 2, e x 2, ⁢ x 12, n x 2, ε x 4, +, ,, -, i x 4, 2 x 6, 0 x 10, s x 2, q x 2, y x 2, x x 4]) in PMML at pos:93751(34%) Scoringfunction: ' + PMML_HIT_SCORE + NO_TEXT_SCORE + 1.75 * TOKEN_SCORE[e] + 1.5 * TOKEN_SCORE[+] =+50.0+0.0+1.75*0.307267883373706+1.5*0.0160883895861106 = 50.56185138028315' final score ~ 50 reviewer: wsperber gave 0
Rendered MathML:
signxiε02+g022g0ε0Ey0e-qx,signxisuperscriptsubscriptε02superscriptsubscriptg022subscriptg0subscriptε0subscriptEy0superscripteqx
End of MathML
.

Hit id59540

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 50
  • Reference to collection: _PREFIX_/40/f015841.xhtml#id59540
found all required tokens ([e x 2, n x 4, + x 3, ,]) in PMML at pos:97672(8%) Scoringfunction: ' + PMML_HIT_SCORE + NO_TEXT_SCORE + 1.75 * TOKEN_SCORE[e] + 1.875 * TOKEN_SCORE[+] =+50.0+0.0+1.75*0.307267883373706+1.875*0.0160883895861106 = 50.567884526377945' final score ~ 50 reviewer: smiao gave 0
Rendered MathML:
e++n+n,superscriptenn
End of MathML
.

Hit id61755

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 50
  • Reference to collection: _PREFIX_/169/f067582.xhtml#id61755
found all required tokens ([∥ x 2, e, ⁢ x 3, +, ( x 2, ) x 2, H, /, ⋅ x 2, , x 10, - x 2, i x 2, 1 x 4, t x 2, 0 x 6, φ x 2, ℏ x 4]) in PMML at pos:123148(8%) Scoringfunction: ' + PMML_HIT_SCORE + NO_TEXT_SCORE + 1.5 * TOKEN_SCORE[e] + 1.5 * TOKEN_SCORE[+] =+50.0+0.0+1.5*0.307267883373706+1.5*0.0160883895861106 = 50.48503440943973' final score ~ 50 reviewer: smiao gave 0
Rendered MathML:
e-itH/φ0(1,1,,0,0,)-φ0(1+it,1,,0,0,)
End of MathML
.

Hit id63194

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 50
  • Reference to collection: _PREFIX_/85/f033634.xhtml#id63194
found all required tokens ([′ x 2, e x 2, +]) in PMML at pos:143212(21%) Scoringfunction: ' + PMML_HIT_SCORE + NO_TEXT_SCORE + 1.75 * TOKEN_SCORE[e] + 1.5 * TOKEN_SCORE[+] =+50.0+0.0+1.75*0.307267883373706+1.5*0.0160883895861106 = 50.56185138028315' final score ~ 50 reviewer: smiao gave 0
Rendered MathML:
e+superscriptsuperscripte
End of MathML
.

Hit id63388

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 50
  • Reference to collection: _PREFIX_/178/f070808.xhtml#id63388
found all required tokens ([ℓ x 6, e, … x 2, ⁢ x 9, C x 4, L x 10, + x 2, → x 8, N x 6, η x 7, α x 2, /, ∈ x 2, - x 5, 1 x 14, 0 x 2, q x 10, ∑ x 2, ∞ x 2, =, Z x 2]) in PMML at pos:144977(56%) Scoringfunction: ' + PMML_HIT_SCORE + NO_TEXT_SCORE + 1.5 * TOKEN_SCORE[e] + 1.75 * TOKEN_SCORE[+] =+50.0+0.0+1.5*0.307267883373706+1.75*0.0160883895861106 = 50.489056506836256' final score ~ 50 reviewer: smiao gave 0
Rendered MathML:
1q+1L=0qLL+/NαLLN-C-1η1ZqηC-1η-eqη1qηN-11subscriptsuperscriptq1superscriptsubscriptL0superscriptqLLNsubscriptαLsubscriptLNsubscriptsuperscriptC1η1ZsuperscriptqηsuperscriptC1ηsubscriptesubscriptqsubscriptη1subscriptqsubscriptηN1
End of MathML
.

Hit id63542

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 50
  • Reference to collection: _PREFIX_/171/f068135.xhtml#id63542
found all required tokens ([f, μ x 2, E x 4, e x 2, ¯ x 2, ⁢, + x 2, /, -, T x 2, 1 x 4, ′ x 4, =]) in PMML at pos:150868(67%) Scoringfunction: ' + PMML_HIT_SCORE + NO_TEXT_SCORE + 1.75 * TOKEN_SCORE[e] + 1.75 * TOKEN_SCORE[+] =+50.0+0.0+1.75*0.307267883373706+1.75*0.0160883895861106 = 50.56587347767968' final score ~ 50 reviewer: smiao gave 0
Rendered MathML:
f¯E=eE+μ/T+1-1¯fsuperscriptEsuperscriptsuperscriptesuperscriptEμT11
End of MathML
.

Hit id63864

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 50
  • Reference to collection: _PREFIX_/83/f032939.xhtml#id63864
found all required tokens ([e x 4, + x 2, -]) in PMML at pos:158352(43%) Scoringfunction: ' + PMML_HIT_SCORE + NO_TEXT_SCORE + 1.9375 * TOKEN_SCORE[e] + 1.75 * TOKEN_SCORE[+] =+50.0+0.0+1.9375*0.307267883373706+1.75*0.0160883895861106 = 50.62348620581225' final score ~ 50 reviewer: smiao gave 0
Rendered MathML:
e++e-superscriptesuperscripte
End of MathML
.

Hit id66816

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 50
  • Reference to collection: _PREFIX_/198/f079035.xhtml#id66816
found all required tokens ([e x 2, n x 2, + x 2, .]) in PMML at pos:227377(64%) Scoringfunction: ' + PMML_HIT_SCORE + NO_TEXT_SCORE + 1.75 * TOKEN_SCORE[e] + 1.75 * TOKEN_SCORE[+] =+50.0+0.0+1.75*0.307267883373706+1.75*0.0160883895861106 = 50.56587347767968' final score ~ 50 reviewer: smiao gave 0
Rendered MathML:
e++n.superscripten
End of MathML
.

Hit id70322

  • Reviwer: cdemirkiran
  • Reviwer score: 0
  • Formulasearchengine score: 50
  • Reference to collection: _PREFIX_/88/f034977.xhtml#id70322
found all required tokens ([e x 2, ′ x 6, c x 2, a x 2, +, =]) in PMML at pos:270857(64%) Scoringfunction: ' + PMML_HIT_SCORE + NO_TEXT_SCORE + 1.75 * TOKEN_SCORE[e] + 1.5 * TOKEN_SCORE[+] =+50.0+0.0+1.75*0.307267883373706+1.5*0.0160883895861106 = 50.56185138028315' final score ~ 50 reviewer: cdemirkiran gave 0
Rendered MathML:
a+e=csuperscriptasuperscriptesuperscriptc
End of MathML
.

Hit id70322

  • Reviwer: wsperber
  • Reviwer score: 0
  • Formulasearchengine score: 50
  • Reference to collection: _PREFIX_/88/f034977.xhtml#id70322
found all required tokens ([e x 2, ′ x 6, c x 2, a x 2, +, =]) in PMML at pos:270857(64%) Scoringfunction: ' + PMML_HIT_SCORE + NO_TEXT_SCORE + 1.75 * TOKEN_SCORE[e] + 1.5 * TOKEN_SCORE[+] =+50.0+0.0+1.75*0.307267883373706+1.5*0.0160883895861106 = 50.56185138028315' final score ~ 50 reviewer: wsperber gave 0
Rendered MathML:
a+e=csuperscriptasuperscriptesuperscriptc
End of MathML
.

Hit id70426

  • Reviwer: cdemirkiran
  • Reviwer score: 0
  • Formulasearchengine score: 50
  • Reference to collection: _PREFIX_/88/f034977.xhtml#id70426
found all required tokens ([d x 2, ′ x 6, e x 2, b x 2, +, =]) in PMML at pos:272514(65%) Scoringfunction: ' + PMML_HIT_SCORE + NO_TEXT_SCORE + 1.75 * TOKEN_SCORE[e] + 1.5 * TOKEN_SCORE[+] =+50.0+0.0+1.75*0.307267883373706+1.5*0.0160883895861106 = 50.56185138028315' final score ~ 50 reviewer: cdemirkiran gave 0
Rendered MathML:
e+d=bsuperscriptesuperscriptdsuperscriptb
End of MathML
.

Hit id70426

  • Reviwer: wsperber
  • Reviwer score: 0
  • Formulasearchengine score: 50
  • Reference to collection: _PREFIX_/88/f034977.xhtml#id70426
found all required tokens ([d x 2, ′ x 6, e x 2, b x 2, +, =]) in PMML at pos:272514(65%) Scoringfunction: ' + PMML_HIT_SCORE + NO_TEXT_SCORE + 1.75 * TOKEN_SCORE[e] + 1.5 * TOKEN_SCORE[+] =+50.0+0.0+1.75*0.307267883373706+1.5*0.0160883895861106 = 50.56185138028315' final score ~ 50 reviewer: wsperber gave 0
Rendered MathML:
e+d=bsuperscriptesuperscriptdsuperscriptb
End of MathML
.

Hit id71299

  • Reviwer: wsperber
  • Reviwer score: 0
  • Formulasearchengine score: 50
  • Reference to collection: _PREFIX_/201/f080061.xhtml#id71299
found all required tokens ([d x 8, e x 2, A x 2, c x 4, B x 2, ⁢ x 10, n x 8, ε x 2, + x 2, k x 12, , x 3, 2 x 4, W x 4, t x 8, σ x 2, =, x x 2]) in PMML at pos:253080(38%) Scoringfunction: ' + PMML_HIT_SCORE + NO_TEXT_SCORE + 1.75 * TOKEN_SCORE[e] + 1.75 * TOKEN_SCORE[+] =+50.0+0.0+1.75*0.307267883373706+1.75*0.0160883895861106 = 50.56587347767968' final score ~ 50 reviewer: wsperber gave 0
Rendered MathML:
εd2dt2cnk+σx,Wntddtcnk=AkWnk,ek+Bkt,εsuperscriptd2dsuperscriptt2superscriptsubscriptcnkσxsubscriptWntddtsuperscriptsubscriptcnksubscriptAksuperscriptsubscriptWnksubscripteksubscriptBkt
End of MathML
.

Hit id76088

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 50
  • Reference to collection: _PREFIX_/83/f032939.xhtml#id76088
found all required tokens ([e x 4, + x 2, -]) in PMML at pos:351038(96%) Scoringfunction: ' + PMML_HIT_SCORE + NO_TEXT_SCORE + 1.9375 * TOKEN_SCORE[e] + 1.75 * TOKEN_SCORE[+] =+50.0+0.0+1.9375*0.307267883373706+1.75*0.0160883895861106 = 50.62348620581225' final score ~ 50 reviewer: smiao gave 0
Rendered MathML:
e++e-superscriptesuperscripte
End of MathML
.

Hit id78763

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 50
  • Reference to collection: _PREFIX_/78/f031132.xhtml#id78763
found all required tokens ([f x 6, 2 x 2, g x 6, W x 6, e x 2, ⁢ x 7, σ x 2, +, ,, =, i x 2]) in PMML at pos:379742(24%) Scoringfunction: ' + PMML_HIT_SCORE + NO_TEXT_SCORE + 1.75 * TOKEN_SCORE[e] + 1.5 * TOKEN_SCORE[+] =+50.0+0.0+1.75*0.307267883373706+1.5*0.0160883895861106 = 50.56185138028315' final score ~ 50 reviewer: smiao gave 0
Rendered MathML:
WfWg=ei2σf,gWf+gWfWgsuperscriptei2σfgWfg
End of MathML
.

Hit id80680

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 50
  • Reference to collection: _PREFIX_/117/f046680.xhtml#id80680
found all required tokens ([f x 2, 2 x 4, e x 2, +, Y x 2]) in PMML at pos:423867(25%) Scoringfunction: ' + PMML_HIT_SCORE + NO_TEXT_SCORE + 1.75 * TOKEN_SCORE[e] + 1.5 * TOKEN_SCORE[+] =+50.0+0.0+1.75*0.307267883373706+1.5*0.0160883895861106 = 50.56185138028315' final score ~ 50 reviewer: smiao gave 0
Rendered MathML:
e2+f2Ysuperscripte2superscriptf2Y
End of MathML
.

Hit id84931

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 50
  • Reference to collection: _PREFIX_/228/f090952.xhtml#id84931
found all required tokens ([D x 4, F x 2, O x 4, K x 2, W x 4, S x 6, ], ⟩ x 2, ⟨ x 2, [, † x 2, e x 4, ∂ x 4, c x 4, ⁡ x 4, ⁢ x 40, + x 3, ( x 2, ) x 2, . x 2, k x 2, h, , x 4, i x 4, - x 4, 2 x 7, 1 x 4, 0 x 6, s x 5, 8 x 2, π x 5, z x 6, φ x 6, = x 3, x x 11]) in PMML at pos:493488(58%) Scoringfunction: ' + PMML_HIT_SCORE + NO_TEXT_SCORE + 1.9375 * TOKEN_SCORE[e] + 1.875 * TOKEN_SCORE[+] =+50.0+0.0+1.9375*0.307267883373706+1.875*0.0160883895861106 = 50.62549725451051' final score ~ 50 reviewer: smiao gave 0
Rendered MathML:
SzxSz0=12πφsxxφs0x+[OSDW,z(x)OSDW,z(0)+h.c.]OSDW,zxOSDW,z0=18π2e-2ikFxei2πφcx-φc0ei2πφsx-φs0=18π2e-2ikFx1xKc+Ks⁢SzxSz0=1⁢2π⟨⁢∂φsx∂x⁢∂φs0∂x⟩+[⟨O⁢SDWz(x)O⁢SDWz†(0)⟩+h.c.]⁢O⁢SDWzxO⁢SDWz†0=⁢1⁢8π2e-⁢2ikFxe⁢i⁢2π-⁢φcx⁢φc0e⁢i⁢2π-⁢φsx⁢φs0=⁢1⁢8π2e-⁢2ikFx1x+KcKs
End of MathML
.

Hit id85073

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 50
  • Reference to collection: _PREFIX_/82/f032769.xhtml#id85073
found all required tokens ([e x 4, G x 2, ¯ x 2, ⁢, n x 14, +, J, ,, ϕ x 6, - x 2, 1 x 4, R x 2, ;, = x 3, τ x 4]) in PMML at pos:470804(44%) Scoringfunction: ' + PMML_HIT_SCORE + NO_TEXT_SCORE + 1.9375 * TOKEN_SCORE[e] + 1.5 * TOKEN_SCORE[+] =+50.0+0.0+1.9375*0.307267883373706+1.5*0.0160883895861106 = 50.61946410841572' final score ~ 50 reviewer: smiao gave 0
Rendered MathML:
τn+1τn=eϕn;eϕn-ϕn-1=GnJ¯=Rn,subscriptτn1subscriptτnsuperscriptesubscriptϕnsuperscriptesubscriptϕnsubscriptϕn1superscriptGn¯JsubscriptRn
End of MathML
.

Hit id85073

  • Reviwer: wsperber
  • Reviwer score: 0
  • Formulasearchengine score: 50
  • Reference to collection: _PREFIX_/82/f032769.xhtml#id85073
found all required tokens ([e x 4, G x 2, ¯ x 2, ⁢, n x 14, +, J, ,, ϕ x 6, - x 2, 1 x 4, R x 2, ;, = x 3, τ x 4]) in PMML at pos:470804(44%) Scoringfunction: ' + PMML_HIT_SCORE + NO_TEXT_SCORE + 1.9375 * TOKEN_SCORE[e] + 1.5 * TOKEN_SCORE[+] =+50.0+0.0+1.9375*0.307267883373706+1.5*0.0160883895861106 = 50.61946410841572' final score ~ 50 reviewer: wsperber gave 0
Rendered MathML:
τn+1τn=eϕn;eϕn-ϕn-1=GnJ¯=Rn,subscriptτn1subscriptτnsuperscriptesubscriptϕnsuperscriptesubscriptϕnsubscriptϕn1superscriptGn¯JsubscriptRn
End of MathML
.

Hit id85574

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 50
  • Reference to collection: _PREFIX_/87/f034551.xhtml#id85574
found all required tokens ([2 x 4, 1 x 8, e x 6, Λ x 2, ⋯ x 2, ⁢ x 3, n x 4, + x 5, N x 6, =]) in PMML at pos:499002(60%) Scoringfunction: ' + PMML_HIT_SCORE + NO_TEXT_SCORE + 1.984375 * TOKEN_SCORE[e] + 1.96875 * TOKEN_SCORE[+] =+50.0+0.0+1.984375*0.307267883373706+1.96875*0.0160883895861106 = 50.64140872306735' final score ~ 50 reviewer: smiao gave 0
Rendered MathML:
Λ=N1e1+N2e2++Nn+1en+1ΛsubscriptN1subscripte1subscriptN2subscripte2subscriptNn1subscripten1
End of MathML
.

Hit id94498

  • Reviwer: wsperber
  • Reviwer score: 0
  • Formulasearchengine score: 50
  • Reference to collection: _PREFIX_/85/f033897.xhtml#id94498
found all required tokens ([3 x 2, 2 x 2, e x 4, ⁢, 4 x 2, +, χ x 2, ,, =, i x 2]) in PMML at pos:613077(44%) Scoringfunction: ' + PMML_HIT_SCORE + NO_TEXT_SCORE + 1.9375 * TOKEN_SCORE[e] + 1.5 * TOKEN_SCORE[+] =+50.0+0.0+1.9375*0.307267883373706+1.5*0.0160883895861106 = 50.61946410841572' final score ~ 50 reviewer: wsperber gave 0
Rendered MathML:
χ2=e3+ie4,superscriptχ2superscripte3isuperscripte4
End of MathML
.

Hit id96632

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 50
  • Reference to collection: _PREFIX_/107/f042448.xhtml#id96632
found all required tokens ([2 x 2, 1 x 2, ⟂ x 2, ′ x 4, e x 4, ⁢ x 2, + x 2, ′′ x 2, =, y x 8]) in PMML at pos:638413(37%) Scoringfunction: ' + PMML_HIT_SCORE + NO_TEXT_SCORE + 1.9375 * TOKEN_SCORE[e] + 1.75 * TOKEN_SCORE[+] =+50.0+0.0+1.9375*0.307267883373706+1.75*0.0160883895861106 = 50.62348620581225' final score ~ 50 reviewer: smiao gave 0
Rendered MathML:
y=y1e+y2e+y′′ysubscripty1superscriptesubscripty2superscriptsuperscriptesuperscripty′′
End of MathML
.

Hit id97124

  • Reviwer: wsperber
  • Reviwer score: 0
  • Formulasearchengine score: 50
  • Reference to collection: _PREFIX_/20/f007830.xhtml#id97124
found all required tokens ([d x 8, e x 2, ∂ x 2, ⁡ x 2, ⁢ x 15, +, ϵ x 2, β x 2, , x 4, ∫ x 4, - x 4, w x 2, t x 4, 0 x 4, P x 4, ∞ x 6, y x 12, =, x x 10]) in PMML at pos:673161(81%) Scoringfunction: ' + PMML_HIT_SCORE + NO_TEXT_SCORE + 1.75 * TOKEN_SCORE[e] + 1.5 * TOKEN_SCORE[+] =+50.0+0.0+1.75*0.307267883373706+1.5*0.0160883895861106 = 50.56185138028315' final score ~ 50 reviewer: wsperber gave 0
Rendered MathML:
wϵ,tt=-0dx-dyyPx,y+0dxe-βx-dyyPx,y,wϵttsuperscriptsubscript0dxsuperscriptsubscriptdyyPxysuperscriptsubscript0dxsuperscripteβxsuperscriptsubscriptdyyPxy
End of MathML
.

Hit id98142

  • Reviwer: cdemirkiran
  • Reviwer score: 0
  • Formulasearchengine score: 50
  • Reference to collection: _PREFIX_/24/f009555.xhtml#id98142
found all required tokens ([E, F x 3, G x 2, O x 2, H x 4, I, ϵ x 2, d x 2, e x 3, ∂, ⁡, ⁢ x 12, ︸ x 2, o x 2, + x 5, k x 7, ,, ∈ x 4, h, i x 7, - x 3, ϕ x 4, 1 x 2, u, 0 x 2, ∑ x 3, ~ x 2, ρ x 4, = x 2]) in PMML at pos:657990(74%) Scoringfunction: ' + PMML_HIT_SCORE + NO_TEXT_SCORE + 1.875 * TOKEN_SCORE[e] + 1.96875 * TOKEN_SCORE[+] =+50.0+0.0+1.875*0.307267883373706+1.96875*0.0160883895861106 = 50.60780129832335' final score ~ 50 reviewer: cdemirkiran gave 0
Rendered MathML:
=i=0dkGFI~k+eii-EFuhϕHk+ei-ϕHk+Oρ+oρ,ϵ1superscriptsubscripti0dsubscriptkGsubscriptFsubscriptsuperscript~IiksuperscripteisubscriptEFsuperscriptuhϕHk+ei-ϕHkOρsubscriptoρϵ1
End of MathML
.

Hit id98142

  • Reviwer: wsperber
  • Reviwer score: 0
  • Formulasearchengine score: 50
  • Reference to collection: _PREFIX_/24/f009555.xhtml#id98142
found all required tokens ([E, F x 3, G x 2, O x 2, H x 4, I, ϵ x 2, d x 2, e x 3, ∂, ⁡, ⁢ x 12, ︸ x 2, o x 2, + x 5, k x 7, ,, ∈ x 4, h, i x 7, - x 3, ϕ x 4, 1 x 2, u, 0 x 2, ∑ x 3, ~ x 2, ρ x 4, = x 2]) in PMML at pos:657990(74%) Scoringfunction: ' + PMML_HIT_SCORE + NO_TEXT_SCORE + 1.875 * TOKEN_SCORE[e] + 1.96875 * TOKEN_SCORE[+] =+50.0+0.0+1.875*0.307267883373706+1.96875*0.0160883895861106 = 50.60780129832335' final score ~ 50 reviewer: wsperber gave 0
Rendered MathML:
=i=0dkGFI~k+eii-EFuhϕHk+ei-ϕHk+Oρ+oρ,ϵ1superscriptsubscripti0dsubscriptkGsubscriptFsubscriptsuperscript~IiksuperscripteisubscriptEFsuperscriptuhϕHk+ei-ϕHkOρsubscriptoρϵ1
End of MathML
.

Hit id116602

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/106/f042002.xhtml#id116602
no match at pos:929552(000049%) VariableMap:[μ x 2, d x 2, λ x 2, n x 2, +, /] Expects 1 occurences for 'e' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: smiao gave 0
Rendered MathML:
λ+dn/μλsuperscriptdnμ
End of MathML
.

Hit id118788

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/106/f042002.xhtml#id118788
no match at pos:963079(000051%) VariableMap:[μ x 2, T x 4, d x 2, A x 2, ⁢ x 3, S x 4, λ x 2, n x 2, + x 2, /, ∈ x 2] Expects 1 occurences for 'e' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: smiao gave 0
Rendered MathML:
T+SSTAλ+dn/μsuperscriptTSSsubscriptTAλsuperscriptdnμ
End of MathML
.

Hit id146627

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/106/f042002.xhtml#id146627
no match at pos:1387433(000073%) VariableMap:[μ x 2, ν x 4, d x 4, A x 2, B x 2, ⁢ x 6, λ x 2, n x 4, + x 3, / x 2, ∈ x 4, , x 2, -, T x 8, S x 8] Expects 1 occurences for 'e' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: smiao gave 0
Rendered MathML:
T+SSTAλ+dn/ν,T-SSTBμ+dn/ν,superscriptTSSsubscriptTAλsuperscriptdnνsuperscriptTSSsubscriptTBμsuperscriptdnν
End of MathML
.

Hit id53437

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/171/f068140.xhtml#id53437
no match at pos:2093(000001%) VariableMap:[2, 1, a x 2] Expects 1 occurences for 'e' but has only 0 Expects 1 occurences for '+' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: smiao gave 0
Rendered MathML:
1,2,a12a
End of MathML
.

Hit id53563

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/43/f017094.xhtml#id53563
no match at pos:3840(000001%) VariableMap:[t, c, ⁢ x 2, → x 2, χ, ., z, y, =, i, x] Expects 1 occurences for 'e' but has only 0 Expects 1 occurences for '+' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: smiao gave 0
Rendered MathML:
χ=xyzcti.χxyz⁢cti
End of MathML
.

Hit id53632

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/2/f000429.xhtml#id53632
no match at pos:5664(000003%) VariableMap:[d, pm, \, =, x] Expects 1 occurences for 'e' but has only 0 Expects 1 occurences for '+' but has only 0 Expects 1 occurences for '^' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: smiao gave 0
Rendered MathML:
x=±dx±dx=\pm d
End of MathML
.

Hit id53680

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/200/f079836.xhtml#id53680
no match at pos:5576(000001%) VariableMap:[ν, ¯ x 2, ⁢, N x 2] Expects 1 occurences for 'e' but has only 0 Expects 1 occurences for '+' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: smiao gave 0
Rendered MathML:
ν¯N¯νN
End of MathML
.

Hit id54275

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/82/f032570.xhtml#id54275
no match at pos:11542(000003%) VariableMap:[˙ x 2, A x 2, a, =] Expects 1 occurences for 'e' but has only 0 Expects 1 occurences for '+' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: smiao gave 0
Rendered MathML:
a˙=A˙aA
End of MathML
.

Hit id54410

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/160/f063895.xhtml#id54410
no match at pos:15845(000002%) VariableMap:[0 x 2, π x 2, ± x 2, ,] Expects 1 occurences for 'e' but has only 0 Expects 1 occurences for '+' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: smiao gave 0
Rendered MathML:
±π,0±π0
End of MathML
.

Hit id54521

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/171/f068394.xhtml#id54521
no match at pos:16212(000006%) VariableMap:[1 x 2, 0, ≤ x 2, α x 2] Expects 1 occurences for 'e' but has only 0 Expects 1 occurences for '+' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: smiao gave 0
Rendered MathML:
0α10α1
End of MathML
.

Hit id54957

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/185/f073990.xhtml#id54957
no match at pos:23026(000006%) VariableMap:[to, 0, \, | x 2, y] Expects 1 occurences for 'e' but has only 0 Expects 1 occurences for '+' but has only 0 Expects 1 occurences for '^' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: smiao gave 0
Rendered MathML:
y0y0|y|\to 0
End of MathML
.

Hit id57243

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/139/f055294.xhtml#id57243
no match at pos:56069(000033%) VariableMap:[2, theta, sin, \ x 2, ^] Expects 1 occurences for 'e' but has only 0 Expects 1 occurences for '+' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: smiao gave 0
Rendered MathML:
sin2θsuperscript2θ\sin^{{2}}\theta
End of MathML
.

Hit id57913

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/51/f020131.xhtml#id57913
no match at pos:66098(000017%) VariableMap:[g, W, displaystyle, \ x 2, _, partial] Expects 1 occurences for 'e' but has only 0 Expects 1 occurences for '+' but has only 0 Expects 1 occurences for '^' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: smiao gave 0
Rendered MathML:
gWsubscriptgW\displaystyle\partial _{g}W
End of MathML
.

Hit id58564

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/220/f087765.xhtml#id58564
no match at pos:73708(000004%) VariableMap:[q, n, ^, -] Expects 1 occurences for 'e' but has only 0 Expects 1 occurences for '+' but has only 0 Expects 1 occurences for '\' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: smiao gave 0
Rendered MathML:
q-nsuperscriptqnq^{{-n}}
End of MathML
.

Hit id62313

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/239/f095264.xhtml#id62313
no match at pos:138752(000033%) VariableMap:[tilde x 5, x 2, yy, sigma, ], \ x 19, ccc, left, _ x 5, ^, rho x 4, right, [, end, & x 6, (, zz, ), xx, -, begin, xy, yx, 1, 0 x 4, displaystyle, array x 2] Expects 1 occurences for 'e' but has only 0 Expects 1 occurences for '+' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: smiao gave 0
Rendered MathML:
ρ~xxρ~xy0ρ~yxρ~yy000σ~zz-1superscript~ρ⁢xx~ρ⁢xy0~ρ⁢yx~ρ⁢yy000~σ⁢zz1\displaystyle\left(\begin{array}[]{ccc}\tilde{\rho}_{{xx}}&\tilde{\rho}_{{xy}}&0\\ \tilde{\rho}_{{yx}}&\tilde{\rho}_{{yy}}&0\\ 0&0&\tilde{\sigma}_{{zz}}\end{array}\right)^{{-1}}
End of MathML
.

Hit id62419

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/53/f020817.xhtml#id62419
no match at pos:138700(000018%) VariableMap:[e x 2, b x 2, a x 2, = x 2] Expects 1 occurences for '+' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: smiao gave 0
Rendered MathML:
a=b=eabe
End of MathML
.

Hit id62540

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/229/f091305.xhtml#id62540
no match at pos:137389(000050%) VariableMap:[f x 2, ν x 2, E x 2, exp, T x 4, 1 x 4, ⁡, ⁢, + x 2, /, ⋆ x 2, =] Expects 1 occurences for 'e' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: smiao gave 0
Rendered MathML:
fT=1expE+ν/T+1fT1superscriptEνT1
End of MathML
.

Hit id63103

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/96/f038222.xhtml#id63103
no match at pos:141291(000013%) VariableMap:[b x 2, c x 2, a x 2, < x 2] Expects 1 occurences for 'e' but has only 0 Expects 1 occurences for '+' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: smiao gave 0
Rendered MathML:
a<c<bacb
End of MathML
.

Hit id67072

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/248/f098868.xhtml#id67072
no match at pos:208596(000031%) VariableMap:[T x 2, 70 x 2, ≈ x 2, -] Expects 1 occurences for 'e' but has only 0 Expects 1 occurences for '+' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: smiao gave 0
Rendered MathML:
T-70T70
End of MathML
.

Hit id68458

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/49/f019249.xhtml#id68458
no match at pos:232651(000032%) VariableMap:[e, displaystyle, n x 2, ~, + x 3, \, ^, ,] Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: smiao gave 0
Rendered MathML:
e++n+n,superscriptenn\displaystyle e^{+}+n+n~,
End of MathML
.

Hit id68560

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/214/f085325.xhtml#id68560
no match at pos:235782(000037%) VariableMap:[0 x 2, t x 2, s x 2, ≥ x 2] Expects 1 occurences for 'e' but has only 0 Expects 1 occurences for '+' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: smiao gave 0
Rendered MathML:
ts0ts0
End of MathML
.

Hit id69142

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/49/f019249.xhtml#id69142
no match at pos:242773(000034%) VariableMap:[e, displaystyle, ~, + x 2, \, ^, X, ,] Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: smiao gave 0
Rendered MathML:
e++X,superscripteX\displaystyle e^{+}+X~,
End of MathML
.

Hit id70362

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/92/f036672.xhtml#id70362
no match at pos:248994(000031%) VariableMap:[b, +, ~ x 2] Expects 1 occurences for 'e' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: smiao gave 0
Rendered MathML:
b~+subscript~b
End of MathML
.

Hit id70814

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/26/f010386.xhtml#id70814
no match at pos:273281(000050%) VariableMap:[e, displaystyle, ;, n, ~, + x 2, \, ^] Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: smiao gave 0
Rendered MathML:
e++n;superscripten\displaystyle e^{+}+n~;
End of MathML
.

Hit id74806

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/71/f028140.xhtml#id74806
no match at pos:325439(000088%) VariableMap:[overline, \, MS] Expects 1 occurences for 'e' but has only 0 Expects 1 occurences for '+' but has only 0 Expects 1 occurences for '^' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: smiao gave 0
Rendered MathML:
MS¯¯MS\overline{MS}
End of MathML
.

Hit id79096

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/71/f028113.xhtml#id79096
no match at pos:384324(000068%) VariableMap:[w, \ x 2, (, ), rho, hat] Expects 1 occurences for 'e' but has only 0 Expects 1 occurences for '+' but has only 0 Expects 1 occurences for '^' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: smiao gave 0
Rendered MathML:
ρwρw\hat{\rho}(w)
End of MathML
.

Hit id88534

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/184/f073321.xhtml#id88534
no match at pos:538652(000060%) VariableMap:[F, G x 2, a x 2, +, l, ( x 3, ) x 3, beta, ,, frac, - x 2, prime x 2, 2, v, u, 0, \ x 9, _ x 2, left x 2, ^ x 4, right x 2, <, eq] Expects 1 occurences for 'e' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: smiao gave 0
Rendered MathML:
βeqava-G-F+Gul2<0superscriptsubscriptβeqasubscriptvasuperscriptGsuperscriptFGusuperscriptl20\beta _{{(eq)}}^{{a}}v_{{a}}\left(-G^{{\prime}}-\frac{\left(F^{{\prime}}+G\right)}{u}\right)\, l^{{2}}<0
End of MathML
.

Hit id88748

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/184/f073321.xhtml#id88748
no match at pos:541886(000060%) VariableMap:[F, G x 2, +, ( x 2, ) x 2, - x 2, frac, prime x 2, u, 0, \ x 7, left x 2, ^ x 2, >, right x 2] Expects 1 occurences for 'e' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: smiao gave 0
Rendered MathML:
-G-F+Gu>0superscriptGsuperscriptFGu0\left(-G^{{\prime}}-\frac{\left(F^{{\prime}}+G\right)}{u}\right)>0
End of MathML
.

Hit id90867

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/184/f073321.xhtml#id90867
no match at pos:574759(000064%) VariableMap:[F x 2, G x 3, beta, ], \ x 18, left x 4, _ x 4, ^ x 8, right x 4, [, b x 4, a x 2, +, ( x 4, ) x 4, omega x 4, - x 3, frac x 2, prime x 3, v, 2 x 2, u, 0, 4, >, eq] Expects 1 occurences for 'e' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: smiao gave 0
Rendered MathML:
ωbωb-G-F+GuF-ωbωb4βeqava2G2>0subscriptωbsuperscriptωbsuperscriptGsuperscriptFGusuperscriptFsubscriptωbsuperscriptωb4superscriptsuperscriptsubscriptβeqasubscriptva2superscriptG20\omega _{{b}}\omega^{{b}}\left[\left(-G^{{\prime}}-\frac{\left(F^{{\prime}}+G\right)}{u}\right)F^{{\prime}}-\frac{\omega _{{b}}\omega^{{b}}}{4\left(\beta _{{(eq)}}^{{a}}v_{{a}}\right)^{{2}}}G^{{2}}\right]>0
End of MathML
.

Hit id92136

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/184/f073321.xhtml#id92136
no match at pos:594313(000066%) VariableMap:[F x 2, G x 3, +, ( x 2, ) x 2, - x 2, frac x 3, prime x 3, 2, 1, u x 2, 4, \ x 10, left x 2, ^ x 4, >, right x 2] Expects 1 occurences for 'e' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: smiao gave 0
Rendered MathML:
-G-F+GuF>G241usuperscriptGsuperscriptFGusuperscriptFsuperscriptG241u\left(-G^{{\prime}}-\frac{\left(F^{{\prime}}+G\right)}{u}\right)F^{{\prime}}>\frac{G^{{2}}}{4}\frac{1}{u}
End of MathML
.

Hit id92471

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/184/f073321.xhtml#id92471
no match at pos:599066(000067%) VariableMap:[F, G x 2, + x 2, ( x 2, ) x 2, frac, prime x 2, u, 0, \ x 7, left x 2, ^ x 2, right x 2, <] Expects 1 occurences for 'e' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: smiao gave 0
Rendered MathML:
G+F+Gu<0superscriptGsuperscriptFGu0\left(G^{{\prime}}+\frac{\left(F^{{\prime}}+G\right)}{u}\right)<0
End of MathML
.

Hit id94676

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/249/f099294.xhtml#id94676
no match at pos:600466(000084%) VariableMap:[′ x 4, ⁢ x 2, δ x 2, +, ε x 4, := x 4, N x 4, ., / x 2, τ x 4] Expects 1 occurences for 'e' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: smiao gave 0
Rendered MathML:
N:=τ/ε and N:=τ+δ/ε.N:=τε and superscriptN:=τsuperscriptδε
End of MathML
.

Hit id96167

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/106/f042002.xhtml#id96167
no match at pos:623046(000033%) VariableMap:[μ x 4, d x 4, A x 2, B x 2, ⁢ x 6, λ x 2, n x 4, + x 2, / x 2, ∈ x 4, , x 2, -, T x 8, S x 8] Expects 1 occurences for 'e' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: smiao gave 0
Rendered MathML:
T+SSTAλ+dn/μ,T-SSTBdn/μ,superscriptTSSsubscriptTAλsuperscriptdnμsuperscriptTSSsubscriptTBsuperscriptdnμ
End of MathML
.

Hit idp900096

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/113/f044894.xhtml#idp900096
no match at pos:113114(000017%) VariableMap:[nu, f, g, kappa, n x 4, + x 2, l, ( x 4, ) x 4, ., ,, - x 3, frac x 2, v x 2, tau, \ x 6, _ x 2, ^ x 4, =] Expects 1 occurences for 'e' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: smiao gave 0
Rendered MathML:
l=f+g(n)ντ(n)-v+(n)-v-(n)κ.lfsuperscriptgnνsuperscriptτnsubscriptsuperscriptvnsubscriptsuperscriptvnκl=\frac{f+g^{{(n)}}}{\nu}\,\tau^{{(n)}}-\frac{v^{{(n)}}_{{+}}-v^{{(n)}}_{{-}}}{\kappa}.
End of MathML
.

Hit idp933824

  • Reviwer: smiao
  • Reviwer score: 0
  • Formulasearchengine score: 0
  • Reference to collection: _PREFIX_/113/f044894.xhtml#idp933824
no match at pos:117545(000018%) VariableMap:[nu, f, g, n x 2, + x 2, ( x 3, ) x 3, /, v, \, _, ^ x 2, =] Expects 1 occurences for 'e' but has only 0 Expects 1 occurences for 'frac' but has only 0 Scoringfunction: ' + NO_SCORE =+0.0 = 0.0' final score ~ 0 reviewer: smiao gave 0
Rendered MathML:
v+(n)=(f+g(n))/νsubscriptsuperscriptvnfsuperscriptgnνv^{{(n)}}_{{+}}=(f+g^{{(n)}})/\nu
End of MathML
.